Suppr超能文献

植物花粉过敏原的起源与功能预测

Origin and Functional Prediction of Pollen Allergens in Plants.

作者信息

Chen Miaolin, Xu Jie, Devis Deborah, Shi Jianxin, Ren Kang, Searle Iain, Zhang Dabing

机构信息

Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (M.C., J.X., J.S., K.R., D.Z.);School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia (D.D., I.S., D.Z.); andSchool of Biological Sciences, University of Adelaide, South Australia 5005, Australia (I.S.).

Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (M.C., J.X., J.S., K.R., D.Z.);School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia (D.D., I.S., D.Z.); andSchool of Biological Sciences, University of Adelaide, South Australia 5005, Australia (I.S.)

出版信息

Plant Physiol. 2016 Sep;172(1):341-57. doi: 10.1104/pp.16.00625. Epub 2016 Jul 19.

Abstract

Pollen allergies have long been a major pandemic health problem for human. However, the evolutionary events and biological function of pollen allergens in plants remain largely unknown. Here, we report the genome-wide prediction of pollen allergens and their biological function in the dicotyledonous model plant Arabidopsis (Arabidopsis thaliana) and the monocotyledonous model plant rice (Oryza sativa). In total, 145 and 107 pollen allergens were predicted from rice and Arabidopsis, respectively. These pollen allergens are putatively involved in stress responses and metabolic processes such as cell wall metabolism during pollen development. Interestingly, these putative pollen allergen genes were derived from large gene families and became diversified during evolution. Sequence analysis across 25 plant species from green alga to angiosperms suggest that about 40% of putative pollen allergenic proteins existed in both lower and higher plants, while other allergens emerged during evolution. Although a high proportion of gene duplication has been observed among allergen-coding genes, our data show that these genes might have undergone purifying selection during evolution. We also observed that epitopes of an allergen might have a biological function, as revealed by comprehensive analysis of two known allergens, expansin and profilin. This implies a crucial role of conserved amino acid residues in both in planta biological function and allergenicity. Finally, a model explaining how pollen allergens were generated and maintained in plants is proposed. Prediction and systematic analysis of pollen allergens in model plants suggest that pollen allergens were evolved by gene duplication and then functional specification. This study provides insight into the phylogenetic and evolutionary scenario of pollen allergens that will be helpful to future characterization and epitope screening of pollen allergens.

摘要

花粉过敏长期以来一直是困扰人类健康的重大全球性问题。然而,植物中花粉过敏原的进化事件及其生物学功能在很大程度上仍不清楚。在此,我们报告了在双子叶模式植物拟南芥(Arabidopsis thaliana)和单子叶模式植物水稻(Oryza sativa)中对花粉过敏原进行全基因组预测及其生物学功能的研究。从水稻和拟南芥中分别预测出了145种和107种花粉过敏原。这些花粉过敏原可能参与应激反应以及花粉发育过程中的代谢过程,如细胞壁代谢。有趣的是,这些假定的花粉过敏原基因来自大型基因家族,在进化过程中发生了分化。对从绿藻到被子植物的25种植物进行的序列分析表明,约40%的假定花粉过敏原蛋白在低等植物和高等植物中都存在,而其他过敏原则在进化过程中出现。虽然在过敏原编码基因中观察到了较高比例的基因重复,但我们的数据表明这些基因在进化过程中可能经历了纯化选择。我们还观察到,一种过敏原的表位可能具有生物学功能,这在对两种已知过敏原膨胀素和肌动蛋白结合蛋白的综合分析中得到了揭示。这意味着保守氨基酸残基在植物体内生物学功能和致敏性方面都起着关键作用。最后,我们提出了一个解释花粉过敏原在植物中如何产生和维持的模型。对模式植物中花粉过敏原的预测和系统分析表明,花粉过敏原是通过基因重复然后功能特化而进化的。这项研究为花粉过敏原的系统发育和进化情况提供了见解,这将有助于未来对花粉过敏原的表征和表位筛选。

相似文献

1
Origin and Functional Prediction of Pollen Allergens in Plants.
Plant Physiol. 2016 Sep;172(1):341-57. doi: 10.1104/pp.16.00625. Epub 2016 Jul 19.
2
Comparative and Evolutionary Analysis of Grass Pollen Allergens Using Brachypodium distachyon as a Model System.
PLoS One. 2017 Jan 19;12(1):e0169686. doi: 10.1371/journal.pone.0169686. eCollection 2017.
4
Transcriptome-based examination of putative pollen allergens of rice (Oryza sativa ssp. japonica).
Mol Plant. 2008 Sep;1(5):751-9. doi: 10.1093/mp/ssn036. Epub 2008 Jul 21.
5
Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis.
Plant Physiol. 2006 Aug;141(4):1167-84. doi: 10.1104/pp.106.080580.
8
Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa).
Funct Integr Genomics. 2006 Jan;6(1):47-59. doi: 10.1007/s10142-005-0005-0. Epub 2005 Oct 1.
9
Functional conservation of MIKC*-Type MADS box genes in Arabidopsis and rice pollen maturation.
Plant Cell. 2013 Apr;25(4):1288-303. doi: 10.1105/tpc.113.110049. Epub 2013 Apr 23.
10
Serpins in rice: protein sequence analysis, phylogeny and gene expression during development.
BMC Genomics. 2012 Sep 4;13:449. doi: 10.1186/1471-2164-13-449.

引用本文的文献

1
Rapid detection of Tulipalin A with SESI-Orbitrap MS: an exploration across spring flowers.
Plant Methods. 2025 Feb 5;21(1):14. doi: 10.1186/s13007-025-01331-6.
2
Grassland allergenicity increases with urbanisation and plant invasions.
Ambio. 2022 Nov;51(11):2261-2277. doi: 10.1007/s13280-022-01741-z. Epub 2022 May 20.
5
Impact of elevated air temperature and drought on pollen characteristics of major agricultural grass species.
PLoS One. 2021 Mar 26;16(3):e0248759. doi: 10.1371/journal.pone.0248759. eCollection 2021.
9
Current status of genomic resources on wild relatives of rice.
Breed Sci. 2020 Apr;70(2):135-144. doi: 10.1270/jsbbs.19064. Epub 2020 Mar 19.
10
OsMYB80 Regulates Anther Development and Pollen Fertility by Targeting Multiple Biological Pathways.
Plant Cell Physiol. 2020 May 1;61(5):988-1004. doi: 10.1093/pcp/pcaa025.

本文引用的文献

1
Genetic and Biochemical Mechanisms of Pollen Wall Development.
Trends Plant Sci. 2015 Nov;20(11):741-753. doi: 10.1016/j.tplants.2015.07.010. Epub 2015 Oct 3.
2
Profilin Regulates Apical Actin Polymerization to Control Polarized Pollen Tube Growth.
Mol Plant. 2015 Dec 7;8(12):1694-709. doi: 10.1016/j.molp.2015.09.013. Epub 2015 Oct 1.
3
Young Genes out of the Male: An Insight from Evolutionary Age Analysis of the Pollen Transcriptome.
Mol Plant. 2015 Jun;8(6):935-45. doi: 10.1016/j.molp.2014.12.008. Epub 2014 Dec 24.
5
UniProt: a hub for protein information.
Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12. doi: 10.1093/nar/gku989. Epub 2014 Oct 27.
6
Comparative and evolutionary analysis of major peanut allergen gene families.
Genome Biol Evol. 2014 Sep 4;6(9):2468-88. doi: 10.1093/gbe/evu189.
7
Deciphering key features in protein structures with the new ENDscript server.
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4. doi: 10.1093/nar/gku316. Epub 2014 Apr 21.
8
PREAL: prediction of allergenic protein by maximum Relevance Minimum Redundancy (mRMR) feature selection.
BMC Syst Biol. 2013;7 Suppl 5(Suppl 5):S9. doi: 10.1186/1752-0509-7-S5-S9. Epub 2013 Dec 9.
9
Wind-pollination and the roles of pollen allergenic proteins.
Asian Pac J Allergy Immunol. 2013 Dec;31(4):261-70.
10
Pfam: the protein families database.
Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30. doi: 10.1093/nar/gkt1223. Epub 2013 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验