Suppr超能文献

存在代谢和转运情况下细胞内未结合的阿托伐他汀浓度

Intracellular Unbound Atorvastatin Concentrations in the Presence of Metabolism and Transport.

作者信息

Kulkarni Priyanka, Korzekwa Kenneth, Nagar Swati

机构信息

Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania.

Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania

出版信息

J Pharmacol Exp Ther. 2016 Oct;359(1):26-36. doi: 10.1124/jpet.116.235689. Epub 2016 Jul 22.

Abstract

Accurate prediction of drug target activity and rational dosing regimen design require knowledge of drug concentrations at the target. It is important to understand the impact of processes such as membrane permeability, partitioning, and active transport on intracellular drug concentrations. The present study aimed to predict intracellular unbound atorvastatin concentrations and characterize the effect of enzyme-transporter interplay on these concentrations. Single-pass liver perfusion studies were conducted in rats using atorvastatin (ATV, 1 µM) alone at 4°C and at 37°C in presence of rifampin (RIF, 20 µM) and 1-aminobenzotriazole (ABT, 1 mM), separately and in combination. The unbound intracellular ATV concentration was predicted with a five-compartment explicit membrane model using the parameterized diffusional influx clearance, active basolateral uptake clearance, and metabolic clearance. Chemical inhibition of uptake and metabolism at 37°C proved to be better controls relative to studies at 4°C. The predicted unbound intracellular concentration at the end of the 50-minute perfusion in the +ABT , +ABT+RIF, and the ATV-only groups was 6.5 µM, 0.58 µM, and 5.14 µM, respectively. The predicted total liver concentrations and amount recovered in bile were within 0.94-1.3 fold of the observed value in all groups. The fold difference in total liver concentration did not always extrapolate to the fold difference in predicted unbound concentration across groups. Together, these results support the use of compartmental modeling to predict intracellular concentrations in dynamic organ-based systems. These predictions can provide insight into the role of uptake transporters and metabolizing enzymes in determining drug tissue concentrations.

摘要

准确预测药物靶点活性和合理设计给药方案需要了解靶点处的药物浓度。了解膜通透性、分配和主动转运等过程对细胞内药物浓度的影响非常重要。本研究旨在预测细胞内未结合的阿托伐他汀浓度,并表征酶 - 转运体相互作用对这些浓度的影响。在大鼠中进行了单程肝脏灌注研究,分别在4°C和37°C下单独使用阿托伐他汀(ATV,1 μM),以及在存在利福平(RIF,20 μM)和1 - 氨基苯并三唑(ABT,1 mM)的情况下单独及联合使用。使用参数化的扩散流入清除率、基底外侧主动摄取清除率和代谢清除率,通过五室显式膜模型预测未结合的细胞内ATV浓度。相对于4°C的研究,37°C下对摄取和代谢的化学抑制被证明是更好的对照。在+ABT、+ABT + RIF和仅ATV组中,50分钟灌注结束时预测的未结合细胞内浓度分别为6.5 μM、0.58 μM和5.14 μM。所有组中预测的肝脏总浓度和胆汁中回收的量在观测值的0.94 - 1.3倍范围内。肝脏总浓度的倍数差异并不总是能推断出各组预测的未结合浓度的倍数差异。总之,这些结果支持使用房室模型来预测基于动态器官的系统中的细胞内浓度。这些预测可以深入了解摄取转运体和代谢酶在确定药物组织浓度中的作用。

相似文献

1
Intracellular Unbound Atorvastatin Concentrations in the Presence of Metabolism and Transport.
J Pharmacol Exp Ther. 2016 Oct;359(1):26-36. doi: 10.1124/jpet.116.235689. Epub 2016 Jul 22.
2
A hybrid model to evaluate the impact of active uptake transport on hepatic distribution of atorvastatin in rats.
Xenobiotica. 2020 May;50(5):536-544. doi: 10.1080/00498254.2019.1668982. Epub 2019 Oct 1.
5
Mechanistic Static Model based Prediction of Transporter Substrate Drug-Drug Interactions Utilizing Atorvastatin and Rifampicin.
Pharm Res. 2023 Dec;40(12):3025-3042. doi: 10.1007/s11095-023-03613-x. Epub 2023 Oct 11.
8
Simultaneous Assessment In Vitro of Transporter and Metabolic Processes in Hepatic Drug Clearance: Use of a Media Loss Approach.
Drug Metab Dispos. 2018 Apr;46(4):405-414. doi: 10.1124/dmd.117.079590. Epub 2018 Feb 8.
9
Transport is not rate-limiting in morphine glucuronidation in the single-pass perfused rat liver preparation.
J Pharmacol Exp Ther. 2006 May;317(2):890-900. doi: 10.1124/jpet.105.100446. Epub 2006 Feb 7.

引用本文的文献

1
Using partition analysis as a facile method to derive net clearances.
Clin Transl Sci. 2022 Aug;15(8):1867-1879. doi: 10.1111/cts.13310. Epub 2022 Jun 2.
2
Prediction of Drug Clearance from Enzyme and Transporter Kinetics.
Methods Mol Biol. 2021;2342:369-417. doi: 10.1007/978-1-0716-1554-6_14.
3
Methods to Predict Volume of Distribution.
Curr Pharmacol Rep. 2019 Oct;5(5):391-399. doi: 10.1007/s40495-019-00186-5. Epub 2019 Jun 6.
4
Recent developments in and models for improved translation of preclinical pharmacokinetics and pharmacodynamics data.
Drug Metab Rev. 2021 May;53(2):207-233. doi: 10.1080/03602532.2021.1922435. Epub 2021 May 25.
5
A hybrid model to evaluate the impact of active uptake transport on hepatic distribution of atorvastatin in rats.
Xenobiotica. 2020 May;50(5):536-544. doi: 10.1080/00498254.2019.1668982. Epub 2019 Oct 1.
8
Improved Predictions of Drug-Drug Interactions Mediated by Time-Dependent Inhibition of CYP3A.
Mol Pharm. 2018 May 7;15(5):1979-1995. doi: 10.1021/acs.molpharmaceut.8b00129. Epub 2018 Apr 10.
10
Continuous Intestinal Absorption Model Based on the Convection-Diffusion Equation.
Mol Pharm. 2017 Sep 5;14(9):3069-3086. doi: 10.1021/acs.molpharmaceut.7b00286. Epub 2017 Jul 31.

本文引用的文献

4
Physiologically-Based Pharmacokinetic-Pharmacodynamic Modeling of 1α,25-Dihydroxyvitamin D3 in Mice.
Drug Metab Dispos. 2016 Feb;44(2):189-208. doi: 10.1124/dmd.115.067033. Epub 2015 Nov 19.
6
Intracellular accumulation of boceprevir according to plasma concentrations and pharmacogenetics.
Int J Antimicrob Agents. 2015 Jun;45(6):657-61. doi: 10.1016/j.ijantimicag.2015.01.019. Epub 2015 Mar 14.
10
Compartmental models for apical efflux by P-glycoprotein--part 1: evaluation of model complexity.
Pharm Res. 2014 Feb;31(2):347-59. doi: 10.1007/s11095-013-1164-7. Epub 2013 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验