Xia Shu-Hua, Fang Wei-Hai, Cui Ganglong, Daniel Chantal
Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
Laboratoire de chimie Quantique, Institut de Chimie UMR7177 CNRS-Université de Strasbourg, 1 Rue Blaise Pascal BP 296/R8, F-67008 Strasbourg, France.
Photochem Photobiol Sci. 2016 Aug 31;15(9):1138-1147. doi: 10.1039/c6pp00148c. Epub 2016 Jul 25.
The structural and optical properties of five ruthenium complexes, recently synthesized for their photooxidative and photophysical properties, have been studied by means of density functional theory (DFT) and time-dependent DFT (TD-DFT). The structures of Ru(bpy)2(BiimH2) (bpy = 2,2'-bipyridine; BiimH2 = 2,2'-biimidazole) 1, Ru(bpy)2(TMBiimH2) (TM BiimH2 = 4,5,4',5'-tetramethyl-2,2'-biimidazole) 5, Ru(bpy)2(L1H2) (L1H2 = 4,5-dimethyl-2(N,N-diacetyl)(carboximidamide-1H-imidazole)) 6, Ru(bpy)2(L2H2) (L2H2 = N(1),N(1),N(2),N(2)-tetrakis(acetyl)ethanediimidamide) 7 and Ru(phen)2(TMBiimH2) (phen = 1,10'-phenanthroline) 8 have been fully optimized in the electronic ground state as well as in the lowest triplet T1 excited state. The theoretical absorption spectra of the five complexes that compare rather well with the experimental spectra have been analyzed on the basis of TD-DFT calculations without and with spin-orbit coupling (SOC). The deprotonated form Ru(bpy)2(L2H)7d contributes mostly to the experimental absorption spectrum of complex 7. The spectra of all molecules are characterized by the presence of low-lying metal-to-ligand charge transfer (MLCT) excited states between 500 and 400 nm, ligand-centered (LC) excited states on the biimidazole-like ligands between 350 and 300 nm and on the bpy ligands between 300 and 250 nm. The theoretical emission wavelengths deduced from the lowest triplet T1 properties calculated at 661 nm (1), 690 nm (5) and 660 nm (8) reproduce the experimental emission spectra of these molecules characterized by a maximum at 638 nm (1), 646 nm (5) and 652 nm (8). In contrast the low theoretical emission wavelengths (>1000 nm) obtained for complexes 6, 7 and 7d favorable to non-radiative decays explain the low intensity of the experimental emission spectra of these two complexes. The SOC is of little effect in this class of molecules where metal-centered (MC) excited states do not perturb the lowest part of the absorption spectra leading to negligible splitting of low-lying triplet states.
最近合成的五种钌配合物因其光氧化和光物理性质而备受关注,本文通过密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)研究了它们的结构和光学性质。对Ru(bpy)2(BiimH2)(bpy = 2,2'-联吡啶;BiimH2 = 2,2'-联咪唑)1、Ru(bpy)2(TMBiimH2)(TM BiimH2 = 4,5,4',5'-四甲基-2,2'-联咪唑)5、Ru(bpy)2(L1H2)(L1H2 = 4,5-二甲基-2(N,N-二乙酰基)(羧基亚胺酰胺-1H-咪唑))6、Ru(bpy)2(L2H2)(L2H2 = N(1),N(1),N(2),N(2)-四(乙酰基)乙二亚胺酰胺)7和Ru(phen)2(TMBiimH2)(phen = 1,10'-菲咯啉)8的结构在电子基态以及最低三重态T1激发态下进行了完全优化。基于TD-DFT计算,在考虑和不考虑自旋轨道耦合(SOC)的情况下,对这五种配合物的理论吸收光谱进行了分析,其与实验光谱相当吻合。去质子化形式Ru(bpy)2(L2H)7d对配合物7的实验吸收光谱贡献最大。所有分子的光谱特征是在500至400 nm之间存在低能金属到配体的电荷转移(MLCT)激发态,在350至300 nm之间的类联咪唑配体上以及300至250 nm之间的bpy配体上存在以配体为中心(LC)的激发态。根据最低三重态T1性质计算得出的理论发射波长在661 nm(1)、690 nm(5)和660 nm(8),与这些分子的实验发射光谱相符,其最大值分别为638 nm(1)、646 nm(5)和652 nm(8)。相比之下,配合物6、7和7d获得的低理论发射波长(>1000 nm)有利于非辐射衰变,这解释了这两种配合物实验发射光谱强度较低的原因。在这类分子中,自旋轨道耦合的影响很小,其中以金属为中心(MC)的激发态不会干扰吸收光谱的最低部分,导致低能三重态的分裂可以忽略不计。