Suppr超能文献

微生物与微生物之间的相互作用触发了锰(II)氧化基因的表达。

Microbe-microbe interactions trigger Mn(II)-oxidizing gene expression.

作者信息

Liang Jinsong, Bai Yaohui, Men Yujie, Qu Jiuhui

机构信息

Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

ISME J. 2017 Jan;11(1):67-77. doi: 10.1038/ismej.2016.106. Epub 2016 Aug 12.

Abstract

Manganese (Mn) is an important metal in geochemical cycles. Some microorganisms can oxidize Mn(II) to Mn oxides, which can, in turn, affect the global cycles of other elements by strong sorption and oxidation effects. Microbe-microbe interactions have important roles in a number of biological processes. However, how microbial interactions affect Mn(II) oxidation still remains unknown. Here, we investigated the interactions between two bacteria (Arthrobacter sp. and Sphingopyxis sp.) in a co-culture, which exhibited Mn(II)-oxidizing activity, although neither were able to oxidize Mn(II) in isolation. We demonstrated that the Mn(II)-oxidizing activity in co-culture was most likely induced via contact-dependent interactions. The expressed Mn(II)-oxidizing protein in the co-culture was purified and identified as a bilirubin oxidase belonging to strain Arthrobacter. Full sequencing of the bilirubin oxidase-encoding gene (boxA) was performed. The Mn(II)-oxidizing protein and the transcripts of boxA were detected in the co-culture, but not in either of the isolated cultures. This indicate that boxA was silent in Arthrobacter monoculture, and was activated in response to presence of Sphingopyxis in the co-culture. Further, transcriptomic analysis by RNA-Seq, extracellular superoxide detection and cell density quantification by flow cytometry indicate induction of boxA gene expression in Arthrobacter was co-incident with a stress response triggered by co-cultivation with Sphingopyxis. Our findings suggest the potential roles of microbial physiological responses to stress induced by other microbes in Mn(II) oxidation and extracellular superoxide production.

摘要

锰(Mn)是地球化学循环中的一种重要金属。一些微生物可以将二价锰(Mn(II))氧化为锰氧化物,而锰氧化物又可通过强烈的吸附和氧化作用影响其他元素的全球循环。微生物间的相互作用在许多生物过程中发挥着重要作用。然而,微生物相互作用如何影响Mn(II)的氧化仍不清楚。在此,我们研究了共培养体系中两种细菌(节杆菌属和鞘氨醇单胞菌属)之间的相互作用,这两种细菌单独培养时均不能氧化Mn(II),但共培养时表现出Mn(II)氧化活性。我们证明,共培养体系中的Mn(II)氧化活性很可能是通过接触依赖性相互作用诱导产生的。对共培养体系中表达的Mn(II)氧化蛋白进行了纯化,并鉴定为节杆菌属菌株的胆红素氧化酶。对编码胆红素氧化酶的基因(boxA)进行了全序列测定。在共培养体系中检测到了Mn(II)氧化蛋白和boxA的转录本,但在单独培养的两种细菌中均未检测到。这表明boxA在节杆菌单培养时处于沉默状态,在共培养体系中因鞘氨醇单胞菌的存在而被激活。此外,通过RNA-Seq进行的转录组分析、细胞外超氧化物检测以及通过流式细胞术进行的细胞密度定量分析表明,节杆菌中boxA基因表达的诱导与与鞘氨醇单胞菌共培养引发的应激反应同时发生。我们的研究结果表明了微生物对其他微生物诱导的应激的生理反应在Mn(II)氧化和细胞外超氧化物产生中的潜在作用。

相似文献

1
Microbe-microbe interactions trigger Mn(II)-oxidizing gene expression.
ISME J. 2017 Jan;11(1):67-77. doi: 10.1038/ismej.2016.106. Epub 2016 Aug 12.
2
Microbial Interspecies Interactions Affect Arsenic Fate in the Presence of Mn.
Microb Ecol. 2017 Nov;74(4):788-794. doi: 10.1007/s00248-017-1008-9. Epub 2017 Jun 16.
3
[Universality and Potential Application of Mn(Ⅱ) Oxidation Triggered by Microbial Interspecies Interactions].
Huan Jing Ke Xue. 2020 Aug 8;41(8):3781-3786. doi: 10.13227/j.hjkx.202001035.
4
Cooperative Mn(II) oxidation between two bacterial strains in an aquatic environment.
Water Res. 2016 Feb 1;89:252-60. doi: 10.1016/j.watres.2015.11.062. Epub 2015 Dec 2.
5
[Manganese Oxidation Characteristics and Oxidation Mechanism of a Manganese-Oxidizing Bacterium sp. HW-16].
Huan Jing Ke Xue. 2017 May 8;38(5):2036-2043. doi: 10.13227/j.hjkx.201611103.
7
Algae promotes the biogenic oxidation of Mn(II) by accelerated extracellular superoxide production.
Water Res. 2024 Sep 1;261:122063. doi: 10.1016/j.watres.2024.122063. Epub 2024 Jul 8.
8
Heterologous expression and characterization of the manganese-oxidizing protein from Erythrobacter sp. strain SD21.
Appl Environ Microbiol. 2014 Nov;80(21):6837-42. doi: 10.1128/AEM.01873-14. Epub 2014 Aug 29.
9
In vitro studies indicate a quinone is involved in bacterial Mn(II) oxidation.
Arch Microbiol. 2008 Jan;189(1):59-69. doi: 10.1007/s00203-007-0293-y. Epub 2007 Aug 3.
10
Microbial communities and biogenic Mn-oxides in an on-site biofiltration system for cold Fe-(II)- and Mn(II)-rich groundwater treatment.
Sci Total Environ. 2020 Mar 25;710:136386. doi: 10.1016/j.scitotenv.2019.136386. Epub 2020 Jan 2.

引用本文的文献

1
Advances in Research on Bacterial Oxidation of Mn(II): A Visualized Bibliometric Analysis Based on CiteSpace.
Microorganisms. 2024 Aug 7;12(8):1611. doi: 10.3390/microorganisms12081611.
2
Microbiologically influenced corrosion of AISI 202 and 316L stainless steels under manganese-oxidizing biofilms.
3 Biotech. 2024 Jan;14(1):12. doi: 10.1007/s13205-023-03845-z. Epub 2023 Dec 13.
4
Transient surface hydration impacts biogeography and intercellular interactions of non-motile bacteria.
Appl Environ Microbiol. 2021 Apr 15;87(8). doi: 10.1128/AEM.03067-20. Epub 2021 Feb 12.
5
The initial inoculation ratio regulates bacterial coculture interactions and metabolic capacity.
ISME J. 2021 Jan;15(1):29-40. doi: 10.1038/s41396-020-00751-7. Epub 2020 Sep 4.
6
Light-driven anaerobic microbial oxidation of manganese.
Nature. 2019 Dec;576(7786):311-314. doi: 10.1038/s41586-019-1804-0. Epub 2019 Dec 4.
8
Synthetic microbial consortia for biosynthesis and biodegradation: promises and challenges.
J Ind Microbiol Biotechnol. 2019 Oct;46(9-10):1343-1358. doi: 10.1007/s10295-019-02211-4. Epub 2019 Jul 5.
9
Microbial Interspecies Interactions Affect Arsenic Fate in the Presence of Mn.
Microb Ecol. 2017 Nov;74(4):788-794. doi: 10.1007/s00248-017-1008-9. Epub 2017 Jun 16.
10
Comparative Genomics Unravels the Functional Roles of Co-occurring Acidophilic Bacteria in Bioleaching Heaps.
Front Microbiol. 2017 May 5;8:790. doi: 10.3389/fmicb.2017.00790. eCollection 2017.

本文引用的文献

1
Cooperative Mn(II) oxidation between two bacterial strains in an aquatic environment.
Water Res. 2016 Feb 1;89:252-60. doi: 10.1016/j.watres.2015.11.062. Epub 2015 Dec 2.
2
Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters.
Front Microbiol. 2015 Apr 20;6:299. doi: 10.3389/fmicb.2015.00299. eCollection 2015.
3
Metabolic dependencies drive species co-occurrence in diverse microbial communities.
Proc Natl Acad Sci U S A. 2015 May 19;112(20):6449-54. doi: 10.1073/pnas.1421834112. Epub 2015 May 4.
4
Extracellular haem peroxidases mediate Mn(II) oxidation in a marine Roseobacter bacterium via superoxide production.
Environ Microbiol. 2015 Oct;17(10):3925-36. doi: 10.1111/1462-2920.12893. Epub 2015 Jun 11.
5
Generation of reactive oxygen species by lethal attacks from competing microbes.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2181-6. doi: 10.1073/pnas.1425007112. Epub 2015 Feb 2.
6
Catalytic oxidation of manganese(II) by multicopper oxidase CueO and characterization of the biogenic Mn oxide.
Water Res. 2014 Jun 1;56:304-13. doi: 10.1016/j.watres.2014.03.013. Epub 2014 Mar 16.
7
Manganese (Mn) oxidation increases intracellular Mn in Pseudomonas putida GB-1.
PLoS One. 2013 Oct 17;8(10):e77835. doi: 10.1371/journal.pone.0077835. eCollection 2013.
8
De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis.
Nat Protoc. 2013 Aug;8(8):1494-512. doi: 10.1038/nprot.2013.084. Epub 2013 Jul 11.
9
Negative regulation of bacterial quorum sensing tunes public goods cooperation.
ISME J. 2013 Nov;7(11):2159-68. doi: 10.1038/ismej.2013.109. Epub 2013 Jul 4.
10
Mn(II,III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase.
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11731-5. doi: 10.1073/pnas.1303677110. Epub 2013 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验