Suppr超能文献

金黄色葡萄球菌的聚集与凝血机制及其在宿主-病原体相互作用中的功能

Staphylococcus aureus Aggregation and Coagulation Mechanisms, and Their Function in Host-Pathogen Interactions.

作者信息

Crosby H A, Kwiecinski J, Horswill A R

机构信息

University of Iowa, Iowa City, IA, United States.

出版信息

Adv Appl Microbiol. 2016;96:1-41. doi: 10.1016/bs.aambs.2016.07.018. Epub 2016 Aug 4.

Abstract

The human commensal bacterium Staphylococcus aureus can cause a wide range of infections ranging from skin and soft tissue infections to invasive diseases like septicemia, endocarditis, and pneumonia. Muticellular organization almost certainly contributes to S. aureus pathogenesis mechanisms. While there has been considerable focus on biofilm formation and its role in colonizing prosthetic joints and indwelling devices, less attention has been paid to nonsurface-attached group behavior like aggregation and clumping. S. aureus is unique in its ability to coagulate blood, and it also produces multiple fibrinogen-binding proteins that facilitate clumping. Formation of clumps, which are large, tightly packed groups of cells held together by fibrin(ogen), has been demonstrated to be important for S. aureus virulence and immune evasion. Clumps of cells are able to avoid detection by the host's immune system due to a fibrin(ogen) coat that acts as a shield, and the size of the clumps facilitates evasion of phagocytosis. In addition, clumping could be an important early step in establishing infections that involve tight clusters of cells embedded in host matrix proteins, such as soft tissue abscesses and endocarditis. In this review, we discuss clumping mechanisms and regulation, as well as what is known about how clumping contributes to immune evasion.

摘要

人类共生细菌金黄色葡萄球菌可引发多种感染,从皮肤和软组织感染到败血症、心内膜炎和肺炎等侵袭性疾病。多细胞组织几乎肯定有助于金黄色葡萄球菌的致病机制。虽然人们相当关注生物膜的形成及其在人工关节和植入装置定植中的作用,但对于聚集和结块等非表面附着的群体行为关注较少。金黄色葡萄球菌在凝血能力方面独具特色,它还产生多种促进结块的纤维蛋白原结合蛋白。已证明,由纤维蛋白(原)维系在一起的细胞紧密聚集形成的结块,对于金黄色葡萄球菌的毒力和免疫逃逸至关重要。由于纤维蛋白(原)外壳起到屏障作用,细胞结块能够避免被宿主免疫系统检测到,而且结块的大小便于逃避吞噬作用。此外,结块可能是在建立涉及嵌入宿主基质蛋白的紧密细胞簇的感染过程中的一个重要早期步骤,例如软组织脓肿和心内膜炎。在这篇综述中,我们讨论结块机制和调控,以及关于结块如何促成免疫逃逸的已知情况。

相似文献

1
Staphylococcus aureus Aggregation and Coagulation Mechanisms, and Their Function in Host-Pathogen Interactions.
Adv Appl Microbiol. 2016;96:1-41. doi: 10.1016/bs.aambs.2016.07.018. Epub 2016 Aug 4.
2
Epic Immune Battles of History: Neutrophils vs. .
Front Cell Infect Microbiol. 2017 Jun 30;7:286. doi: 10.3389/fcimb.2017.00286. eCollection 2017.
4
Inflammasome Activation Can Mediate Tissue-Specific Pathogenesis or Protection in Staphylococcus aureus Infection.
Curr Top Microbiol Immunol. 2016;397:257-82. doi: 10.1007/978-3-319-41171-2_13.
5
Immune Evasion by .
Microbiol Spectr. 2019 Mar;7(2). doi: 10.1128/microbiolspec.GPP3-0061-2019.
6
Staphylococcal manipulation of host immune responses.
Nat Rev Microbiol. 2015 Sep;13(9):529-43. doi: 10.1038/nrmicro3521.
7
Staphylococcus aureus-induced clotting of plasma is an immune evasion mechanism for persistence within the fibrin network.
Microbiology (Reading). 2015 Mar;161(Pt 3):621-627. doi: 10.1099/mic.0.000019. Epub 2014 Dec 22.
8
Staphylococcus aureus versus neutrophil: Scrutiny of ancient combat.
Microb Pathog. 2019 Jun;131:259-269. doi: 10.1016/j.micpath.2019.04.026. Epub 2019 Apr 16.
9
Protein-based biofilm matrices in Staphylococci.
Front Cell Infect Microbiol. 2014 Dec 10;4:171. doi: 10.3389/fcimb.2014.00171. eCollection 2014.

引用本文的文献

2
SaeR/S-regulated factors overcome human complement-mediated inhibition of aggregation to evade neutrophil killing.
Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2412447122. doi: 10.1073/pnas.2412447122. Epub 2025 May 13.
3
Disarming : Review of Strategies Combating This Resilient Pathogen by Targeting Its Virulence.
Pathogens. 2025 Apr 15;14(4):386. doi: 10.3390/pathogens14040386.
4
Lysyl-Phosphatidylglycerol: A Lipid Involved in the Resistance of to Antimicrobial Peptide Activity.
Antibiotics (Basel). 2025 Mar 28;14(4):349. doi: 10.3390/antibiotics14040349.
7
Bacteriophage-driven emergence and expansion of Staphylococcus aureus in rodent populations.
PLoS Pathog. 2024 Jul 24;20(7):e1012378. doi: 10.1371/journal.ppat.1012378. eCollection 2024 Jul.
8
Mechanisms of host adaptation by bacterial pathogens.
FEMS Microbiol Rev. 2024 Jun 20;48(4). doi: 10.1093/femsre/fuae019.
9
Surface Engineering for Endothelium-Mimicking Functions to Combat Infection and Thrombosis in Extracorporeal Life Support Technologies.
Adv Healthc Mater. 2024 Sep;13(22):e2400492. doi: 10.1002/adhm.202400492. Epub 2024 Jul 3.
10
Staphylococcal mastitis in dairy cows.
Front Vet Sci. 2024 May 28;11:1356259. doi: 10.3389/fvets.2024.1356259. eCollection 2024.

本文引用的文献

2
The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response.
Microbiol Spectr. 2016 Apr;4(2). doi: 10.1128/microbiolspec.VMBF-0022-2015.
3
The Staphylococcus aureus Global Regulator MgrA Modulates Clumping and Virulence by Controlling Surface Protein Expression.
PLoS Pathog. 2016 May 4;12(5):e1005604. doi: 10.1371/journal.ppat.1005604. eCollection 2016 May.
4
Simple method for correct enumeration of Staphylococcus aureus.
J Microbiol Methods. 2016 Jun;125:58-63. doi: 10.1016/j.mimet.2016.04.004. Epub 2016 Apr 11.
5
Hyaluronan Modulation Impacts Staphylococcus aureus Biofilm Infection.
Infect Immun. 2016 May 24;84(6):1917-1929. doi: 10.1128/IAI.01418-15. Print 2016 Jun.
6
Fibrinogen Is at the Interface of Host Defense and Pathogen Virulence in Staphylococcus aureus Infection.
Semin Thromb Hemost. 2016 Jun;42(4):408-21. doi: 10.1055/s-0036-1579635. Epub 2016 Apr 7.
7
Role of Multicellular Aggregates in Biofilm Formation.
mBio. 2016 Mar 22;7(2):e00237. doi: 10.1128/mBio.00237-16.
8
Shaping the Growth Behaviour of Biofilms Initiated from Bacterial Aggregates.
PLoS One. 2016 Mar 2;11(3):e0149683. doi: 10.1371/journal.pone.0149683. eCollection 2016.
9
Antibodies against a secreted product of Staphylococcus aureus trigger phagocytic killing.
J Exp Med. 2016 Mar 7;213(3):293-301. doi: 10.1084/jem.20150074. Epub 2016 Feb 15.
10
Staying in Shape: the Impact of Cell Shape on Bacterial Survival in Diverse Environments.
Microbiol Mol Biol Rev. 2016 Feb 10;80(1):187-203. doi: 10.1128/MMBR.00031-15. Print 2016 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验