Suppr超能文献

在三方嵌套粉蚧共生关系中细菌内共生体的反复替换。

Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis.

作者信息

Husnik Filip, McCutcheon John P

机构信息

Division of Biological Sciences, University of Montana, Missoula, MT 59812; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice 37005, Czech Republic;

Division of Biological Sciences, University of Montana, Missoula, MT 59812; Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, ON, Canada M5G 1Z8

出版信息

Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5416-24. doi: 10.1073/pnas.1603910113. Epub 2016 Aug 29.

Abstract

Stable endosymbiosis of a bacterium into a host cell promotes cellular and genomic complexity. The mealybug Planococcus citri has two bacterial endosymbionts with an unusual nested arrangement: the γ-proteobacterium Moranella endobia lives in the cytoplasm of the β-proteobacterium Tremblaya princeps These two bacteria, along with genes horizontally transferred from other bacteria to the P. citri genome, encode gene sets that form an interdependent metabolic patchwork. Here, we test the stability of this three-way symbiosis by sequencing host and symbiont genomes for five diverse mealybug species and find marked fluidity over evolutionary time. Although Tremblaya is the result of a single infection in the ancestor of mealybugs, the γ-proteobacterial symbionts result from multiple replacements of inferred different ages from related but distinct bacterial lineages. Our data show that symbiont replacement can happen even in the most intricate symbiotic arrangements and that preexisting horizontally transferred genes can remain stable on genomes in the face of extensive symbiont turnover.

摘要

一种细菌在宿主细胞内的稳定内共生促进了细胞和基因组的复杂性。粉蚧(Planococcus citri)有两种细菌内共生体,其排列方式不同寻常:γ-变形菌莫氏内共生菌(Moranella endobia)生活在β-变形菌王子颤杆菌(Tremblaya princeps)的细胞质中。这两种细菌,连同从其他细菌水平转移到粉蚧基因组中的基因,编码形成相互依赖的代谢拼凑物的基因集。在这里,我们通过对五种不同粉蚧物种的宿主和共生体基因组进行测序,来测试这种三方共生的稳定性,并发现其在进化时间上具有显著的流动性。尽管颤杆菌是粉蚧祖先单次感染的结果,但γ-变形菌共生体是由来自相关但不同细菌谱系的不同年龄的多次替代产生的。我们的数据表明,即使在最复杂的共生组合中,共生体替代也可能发生,并且在共生体大量更替的情况下,先前存在的水平转移基因在基因组上仍能保持稳定。

相似文献

1
Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis.
Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5416-24. doi: 10.1073/pnas.1603910113. Epub 2016 Aug 29.
3
An interdependent metabolic patchwork in the nested symbiosis of mealybugs.
Curr Biol. 2011 Aug 23;21(16):1366-72. doi: 10.1016/j.cub.2011.06.051. Epub 2011 Aug 11.
4
How does Tremblaya princeps get essential proteins from its nested partner Moranella endobia in the Mealybug Planoccocus citri?
PLoS One. 2013 Oct 21;8(10):e77307. doi: 10.1371/journal.pone.0077307. eCollection 2013.
5
Convergent patterns in the evolution of mealybug symbioses involving different intrabacterial symbionts.
ISME J. 2017 Mar;11(3):715-726. doi: 10.1038/ismej.2016.148. Epub 2016 Dec 16.
6
The Evolution of Interdependence in a Four-Way Mealybug Symbiosis.
Genome Biol Evol. 2021 Aug 3;13(8). doi: 10.1093/gbe/evab123.
7
The link between independent acquisition of intracellular gamma-endosymbionts and concerted evolution in Tremblaya princeps.
Front Microbiol. 2015 Jun 25;6:642. doi: 10.3389/fmicb.2015.00642. eCollection 2015.
8
Heritability of symbiont density reveals distinct regulatory mechanisms in a tripartite symbiosis.
Ecol Evol. 2016 Feb 26;6(7):2053-60. doi: 10.1002/ece3.2005. eCollection 2016 Apr.
9
Infection dynamics of coexisting beta- and gammaproteobacteria in the nested endosymbiotic system of mealybugs.
Appl Environ Microbiol. 2008 Jul;74(13):4175-84. doi: 10.1128/AEM.00250-08. Epub 2008 May 9.

引用本文的文献

1
Targeted disruption of the gene in impairs membrane integrity and host symbiont dynamics.
iScience. 2025 Jul 22;28(8):113178. doi: 10.1016/j.isci.2025.113178. eCollection 2025 Aug 15.
2
Accelerated Pseudogenization in the Ancient Endosymbionts of Giant Scale Insects.
Mol Biol Evol. 2025 Jun 4;42(6). doi: 10.1093/molbev/msaf125.
5
Protein import into bacterial endosymbionts and evolving organelles.
FEBS J. 2025 Jun;292(12):2992-3013. doi: 10.1111/febs.17356. Epub 2024 Dec 10.
6
Mechanisms of host adaptation by bacterial pathogens.
FEMS Microbiol Rev. 2024 Jun 20;48(4). doi: 10.1093/femsre/fuae019.
7
Facultatively intrabacterial localization of a planthopper endosymbiont as an adaptation to its vertical transmission.
mSystems. 2024 Jul 23;9(7):e0063424. doi: 10.1128/msystems.00634-24. Epub 2024 Jun 27.
8
Discovery of a novel symbiotic lineage associated with a hematophagous leech from the genus .
Microbiol Spectr. 2024 Jul 2;12(7):e0428623. doi: 10.1128/spectrum.04286-23. Epub 2024 Jun 6.
9
Immune Gene Repertoire of Soft Scale Insects (Hemiptera: Coccidae).
Int J Mol Sci. 2024 Apr 30;25(9):4922. doi: 10.3390/ijms25094922.
10
With a little help from my friends: the roles of microbial symbionts in insect populations and communities.
Philos Trans R Soc Lond B Biol Sci. 2024 Jun 24;379(1904):20230122. doi: 10.1098/rstb.2023.0122. Epub 2024 May 6.

本文引用的文献

1
Heritability of symbiont density reveals distinct regulatory mechanisms in a tripartite symbiosis.
Ecol Evol. 2016 Feb 26;6(7):2053-60. doi: 10.1002/ece3.2005. eCollection 2016 Apr.
3
No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini.
Proc Natl Acad Sci U S A. 2016 May 3;113(18):5053-8. doi: 10.1073/pnas.1600338113. Epub 2016 Mar 24.
4
Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry.
Nature. 2016 Mar 3;531(7592):101-4. doi: 10.1038/nature16941. Epub 2016 Feb 3.
5
Evolution: Mitochondria in the second act.
Nature. 2016 Mar 3;531(7592):39-40. doi: 10.1038/nature16876. Epub 2016 Feb 3.
6
Infection prevalence of Sodalis symbionts among stinkbugs.
Zoological Lett. 2015 Jan 28;1:5. doi: 10.1186/s40851-014-0009-5. eCollection 2015.
7
Archaeal ancestors of eukaryotes: not so elusive any more.
BMC Biol. 2015 Oct 5;13:84. doi: 10.1186/s12915-015-0194-5.
8
Metabolic Coevolution in the Bacterial Symbiosis of Whiteflies and Related Plant Sap-Feeding Insects.
Genome Biol Evol. 2015 Sep 15;7(9):2635-47. doi: 10.1093/gbe/evv170.
10
Endosymbiotic origin and differential loss of eukaryotic genes.
Nature. 2015 Aug 27;524(7566):427-32. doi: 10.1038/nature14963. Epub 2015 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验