Hillenbrand Patrick, Maier Kerstin C, Cramer Patrick, Gerland Ulrich
Lehrstuhl für Theorie komplexer Biosysteme, Physik-Department, Technische Universität München, Garching, Germany.
Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany.
Elife. 2016 Sep 21;5:e12188. doi: 10.7554/eLife.12188.
To quantify gene regulation, a function is required that relates transcription factor binding to DNA (input) to the rate of mRNA synthesis from a target gene (output). Such a 'gene regulation function' (GRF) generally cannot be measured because the experimental titration of inputs and simultaneous readout of outputs is difficult. Here we show that GRFs may instead be inferred from natural changes in cellular gene expression, as exemplified for the cell cycle in the yeast . We develop this inference approach based on a time series of mRNA synthesis rates from a synchronized population of cells observed over three cell cycles. We first estimate the functional form of how input transcription factors determine mRNA output and then derive GRFs for target genes in the gene cluster that are expressed during G2/M phase. Systematic analysis of additional GRFs suggests a network architecture that rationalizes transcriptional cell cycle oscillations. We find that a transcription factor network alone can produce oscillations in mRNA expression, but that additional input from cyclin oscillations is required to arrive at the native behaviour of the cell cycle oscillator.
为了量化基因调控,需要一个将转录因子与DNA的结合(输入)与靶基因mRNA合成速率(输出)联系起来的函数。这样的“基因调控函数”(GRF)通常无法测量,因为对输入进行实验滴定并同时读取输出很困难。在这里,我们表明GRF可以从细胞基因表达的自然变化中推断出来,如酵母细胞周期的例子所示。我们基于在三个细胞周期中观察到的同步细胞群体的mRNA合成速率的时间序列开发了这种推断方法。我们首先估计输入转录因子如何决定mRNA输出的函数形式,然后推导在G2/M期表达的基因簇中靶基因的GRF。对其他GRF的系统分析表明了一种使转录细胞周期振荡合理化的网络结构。我们发现仅转录因子网络就能产生mRNA表达的振荡,但需要细胞周期蛋白振荡的额外输入才能达到细胞周期振荡器的天然行为。