Suppr超能文献

一条最小信号通路的架构解释了T细胞对抗原亲和力和剂量百万倍变化的反应。

Architecture of a minimal signaling pathway explains the T-cell response to a 1 million-fold variation in antigen affinity and dose.

作者信息

Lever Melissa, Lim Hong-Sheng, Kruger Philipp, Nguyen John, Trendel Nicola, Abu-Shah Enas, Maini Philip Kumar, van der Merwe Philip Anton, Dushek Omer

机构信息

Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom.

Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):E6630-E6638. doi: 10.1073/pnas.1608820113. Epub 2016 Oct 4.

Abstract

T cells must respond differently to antigens of varying affinity presented at different doses. Previous attempts to map peptide MHC (pMHC) affinity onto T-cell responses have produced inconsistent patterns of responses, preventing formulations of canonical models of T-cell signaling. Here, a systematic analysis of T-cell responses to 1 million-fold variations in both pMHC affinity and dose produced bell-shaped dose-response curves and different optimal pMHC affinities at different pMHC doses. Using sequential model rejection/identification algorithms, we identified a unique, minimal model of cellular signaling incorporating kinetic proofreading with limited signaling coupled to an incoherent feed-forward loop (KPL-IFF) that reproduces these observations. We show that the KPL-IFF model correctly predicts the T-cell response to antigen copresentation. Our work offers a general approach for studying cellular signaling that does not require full details of biochemical pathways.

摘要

T细胞必须对以不同剂量呈现的不同亲和力抗原做出不同反应。先前将肽-主要组织相容性复合体(pMHC)亲和力映射到T细胞反应上的尝试产生了不一致的反应模式,阻碍了T细胞信号传导规范模型的构建。在此,对T细胞对pMHC亲和力和剂量的100万倍变化的反应进行的系统分析产生了钟形剂量反应曲线,以及在不同pMHC剂量下不同的最佳pMHC亲和力。使用顺序模型拒绝/识别算法,我们确定了一个独特的、最小的细胞信号传导模型,该模型结合了动力学校对和与非相干前馈环(KPL-IFF)耦合的有限信号传导,再现了这些观察结果。我们表明,KPL-IFF模型正确预测了T细胞对抗原共呈递的反应。我们的工作提供了一种研究细胞信号传导的通用方法,该方法不需要生化途径的全部细节。

相似文献

1
Architecture of a minimal signaling pathway explains the T-cell response to a 1 million-fold variation in antigen affinity and dose.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):E6630-E6638. doi: 10.1073/pnas.1608820113. Epub 2016 Oct 4.
2
Dependence of T cell antigen recognition on T cell receptor-peptide MHC confinement time.
Immunity. 2010 Feb 26;32(2):163-74. doi: 10.1016/j.immuni.2009.11.013. Epub 2010 Feb 4.
3
5
Early T cell receptor signals globally modulate ligand:receptor affinities during antigen discrimination.
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12190-12195. doi: 10.1073/pnas.1613140114. Epub 2017 Oct 30.
7
Is TCR/pMHC Affinity a Good Estimate of the T-cell Response? An Answer Based on Predictions From 12 Phenotypic Models.
Front Immunol. 2019 Mar 4;10:349. doi: 10.3389/fimmu.2019.00349. eCollection 2019.
9
Engineering improved T cell receptors using an alanine-scan guided T cell display selection system.
J Immunol Methods. 2013 Jun 28;392(1-2):1-11. doi: 10.1016/j.jim.2013.02.018. Epub 2013 Mar 13.
10
The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness.
Nature. 2010 Apr 8;464(7290):932-6. doi: 10.1038/nature08944. Epub 2010 Mar 31.

引用本文的文献

1
A model-based design strategy to engineer miRNA-regulated detection systems.
Front Syst Biol. 2025 Aug 14;5:1601854. doi: 10.3389/fsysb.2025.1601854. eCollection 2025.
2
A consensus statement on the use of digital twins in medicine.
NPJ Digit Med. 2025 Jul 28;8(1):484. doi: 10.1038/s41746-025-01897-4.
3
Proofreading and single-molecule sensitivity in T cell receptor signaling by condensate nucleation.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2422787122. doi: 10.1073/pnas.2422787122. Epub 2025 May 30.
4
Platforms for studying cell-cell recognition by immune cells.
Immunol Cell Biol. 2025 Aug;103(7):636-647. doi: 10.1111/imcb.70036. Epub 2025 May 29.
6
Tuning TCR complex recruitment to the T cell antigen coupler (TAC) enhances TAC-T cell function.
Sci Rep. 2025 Feb 25;15(1):6769. doi: 10.1038/s41598-025-87944-2.
7
Differential roles of kinetic on- and off-rates in T-cell receptor signal integration revealed with a modified Fab'-DNA ligand.
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2406680121. doi: 10.1073/pnas.2406680121. Epub 2024 Sep 19.
8
Regulation of temporal cytokine production by co-stimulation receptors in TCR-T cells is lost in CAR-T cells.
Immunother Adv. 2024 Jun 19;4(1):ltae004. doi: 10.1093/immadv/ltae004. eCollection 2024.
10
Antigen perception in T cells by long-term Erk and NFAT signaling dynamics.
Proc Natl Acad Sci U S A. 2023 Dec 26;120(52):e2308366120. doi: 10.1073/pnas.2308366120. Epub 2023 Dec 19.

本文引用的文献

1
Multisite Phosphorylation Modulates the T Cell Receptor ζ-Chain Potency but not the Switchlike Response.
Biophys J. 2016 Apr 26;110(8):1896-1906. doi: 10.1016/j.bpj.2016.03.024.
2
Control of T cell antigen reactivity via programmed TCR downregulation.
Nat Immunol. 2016 Apr;17(4):379-86. doi: 10.1038/ni.3386. Epub 2016 Feb 22.
4
K33-linked polyubiquitination of Zap70 by Nrdp1 controls CD8(+) T cell activation.
Nat Immunol. 2015 Dec;16(12):1253-62. doi: 10.1038/ni.3258. Epub 2015 Sep 21.
6
Automated adaptive inference of phenomenological dynamical models.
Nat Commun. 2015 Aug 21;6:8133. doi: 10.1038/ncomms9133.
7
A THEMIS:SHP1 complex promotes T-cell survival.
EMBO J. 2015 Feb 3;34(3):393-409. doi: 10.15252/embj.201387725. Epub 2014 Dec 22.
8
T cell receptor binding affinity governs the functional profile of cancer-specific CD8+ T cells.
Clin Exp Immunol. 2015 May;180(2):255-70. doi: 10.1111/cei.12570.
9
Coreceptor scanning by the T cell receptor provides a mechanism for T cell tolerance.
Cell. 2014 Oct 9;159(2):333-45. doi: 10.1016/j.cell.2014.08.042. Epub 2014 Oct 2.
10
Phenotypic models of T cell activation.
Nat Rev Immunol. 2014 Sep;14(9):619-29. doi: 10.1038/nri3728.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验