Suppr超能文献

泛素载体蛋白9/微小RNA-30a轴调控人白色脂肪细胞中的线粒体活性。

Mitochondrial Activity in Human White Adipocytes Is Regulated by the Ubiquitin Carrier Protein 9/microRNA-30a Axis.

作者信息

Koh Eun Hee, Chen Yong, Bader David A, Hamilton Mark P, He Bin, York Brian, Kajimura Shingo, McGuire Sean E, Hartig Sean M

机构信息

From the Departments of Molecular and Cellular Biology and; the Department of Internal Medicine, Asan Medical Center, Seoul 138-736, Republic of Korea.

the Diabetes Center and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143, and.

出版信息

J Biol Chem. 2016 Nov 18;291(47):24747-24755. doi: 10.1074/jbc.M116.749408. Epub 2016 Oct 10.

Abstract

The acquisition of beige adipocyte features by white fat cells corresponds to protection against obesity-induced metabolic diseases in humans and animal models of type 2 diabetes. In adipose tissue, expression of the E2 small ubiquitin-like modifier ligase ubiquitin carrier protein 9 (Ubc9) is positively correlated with markers of insulin resistance and corresponds with impaired browning of human white adipocytes. However, the molecular regulation of Ubc9 expression in adipocytes and other cells remains unclear. In this study, we demonstrate that the mRNA and protein expression of Ubc9 are regulated by the microRNA miRNA-30a (miR-30a) in human subcutaneous adipocytes. Ubc9 and miR-30a exhibit inverse expression in adipose tissue, with miR-30a robustly elevated in brown fat. Depletion of Ubc9 by siRNA or enforced expression of a miR-30a mimic augments mitochondrial volume and respiration in human white adipocytes, reflecting features of brown fat cells. Furthermore, Ubc9 depletion induces a brown fat gene program in human subcutaneous adipocytes. Induction of the beige-selective gene program corresponds to stabilization of the PR domain-containing 16 (PRDM16) protein, an obligate transcriptional regulator of the brown/beige fat metabolic program in white adipocytes that interacts with Ubc9. Taken together, our data demonstrate a previously unappreciated molecular axis that controls browning of human white adipocytes.

摘要

在人类和2型糖尿病动物模型中,白色脂肪细胞获得米色脂肪细胞特征与预防肥胖诱导的代谢性疾病相关。在脂肪组织中,E2小泛素样修饰酶泛素载体蛋白9(Ubc9)的表达与胰岛素抵抗标志物呈正相关,并且与人类白色脂肪细胞的褐变受损相关。然而,Ubc9在脂肪细胞和其他细胞中的分子调控仍不清楚。在本研究中,我们证明在人类皮下脂肪细胞中,Ubc9的mRNA和蛋白表达受微小RNA miRNA-30a(miR-30a)调控。Ubc9和miR-30a在脂肪组织中呈现相反的表达,miR-30a在棕色脂肪中显著升高。通过siRNA敲低Ubc9或强制表达miR-30a模拟物可增加人类白色脂肪细胞中的线粒体体积和呼吸作用,反映出棕色脂肪细胞的特征。此外,Ubc9缺失可诱导人类皮下脂肪细胞中的棕色脂肪基因程序。米色选择性基因程序的诱导与含PR结构域的16(PRDM16)蛋白的稳定有关,PRDM16是白色脂肪细胞中棕色/米色脂肪代谢程序的必需转录调节因子,可与Ubc9相互作用。综上所述,我们的数据证明了一个以前未被认识的控制人类白色脂肪细胞褐变的分子轴。

相似文献

1
Mitochondrial Activity in Human White Adipocytes Is Regulated by the Ubiquitin Carrier Protein 9/microRNA-30a Axis.
J Biol Chem. 2016 Nov 18;291(47):24747-24755. doi: 10.1074/jbc.M116.749408. Epub 2016 Oct 10.
2
targets gene networks that promote browning of human and mouse adipocytes.
Am J Physiol Endocrinol Metab. 2020 Oct 1;319(4):E667-E677. doi: 10.1152/ajpendo.00045.2020. Epub 2020 Aug 17.
3
Ubc9 Impairs Activation of the Brown Fat Energy Metabolism Program in Human White Adipocytes.
Mol Endocrinol. 2015 Sep;29(9):1320-33. doi: 10.1210/me.2015-1084. Epub 2015 Jul 20.
4
Reversine promotes browning of white adipocytes by suppressing miR-133a.
J Cell Physiol. 2019 Apr;234(4):3800-3813. doi: 10.1002/jcp.27148. Epub 2018 Aug 21.
6
Obesity-Associated miR-199a/214 Cluster Inhibits Adipose Browning via PRDM16-PGC-1α Transcriptional Network.
Diabetes. 2018 Dec;67(12):2585-2600. doi: 10.2337/db18-0626. Epub 2018 Oct 2.
7
MiR-27 orchestrates the transcriptional regulation of brown adipogenesis.
Metabolism. 2014 Feb;63(2):272-82. doi: 10.1016/j.metabol.2013.10.004. Epub 2013 Oct 24.
10
Irisin exerts dual effects on browning and adipogenesis of human white adipocytes.
Am J Physiol Endocrinol Metab. 2016 Aug 1;311(2):E530-41. doi: 10.1152/ajpendo.00094.2016. Epub 2016 Jul 19.

引用本文的文献

1
The microRNA miR-30a blocks adipose tissue fibrosis accumulation in obesity.
J Clin Invest. 2025 Jun 5;135(15). doi: 10.1172/JCI175566. eCollection 2025 Aug 1.
2
Pulling the trigger: Noncoding RNAs in white adipose tissue browning.
Rev Endocr Metab Disord. 2024 Apr;25(2):399-420. doi: 10.1007/s11154-023-09866-6. Epub 2023 Dec 29.
4
Mitochondria-associated regulation in adipose tissues and potential reagents for obesity intervention.
Front Endocrinol (Lausanne). 2023 Jun 16;14:1132342. doi: 10.3389/fendo.2023.1132342. eCollection 2023.
5
Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies.
Signal Transduct Target Ther. 2023 May 27;8(1):220. doi: 10.1038/s41392-023-01439-y.
6
The rheumatoid arthritis drug auranofin lowers leptin levels and exerts antidiabetic effects in obese mice.
Cell Metab. 2022 Dec 6;34(12):1932-1946.e7. doi: 10.1016/j.cmet.2022.09.019. Epub 2022 Oct 14.
7
Regulation of Adipose Thermogenesis and its Critical Role in Glucose and Lipid Metabolism.
Int J Biol Sci. 2022 Jul 27;18(13):4950-4962. doi: 10.7150/ijbs.75488. eCollection 2022.
8
Contributions of microRNAs to Peripheral Insulin Sensitivity.
Endocrinology. 2022 Feb 1;163(2). doi: 10.1210/endocr/bqab250.
9
Mitochondrial regulation and white adipose tissue homeostasis.
Trends Cell Biol. 2022 Apr;32(4):351-364. doi: 10.1016/j.tcb.2021.10.008. Epub 2021 Nov 19.
10
Pathway-based classification of glioblastoma uncovers a mitochondrial subtype with therapeutic vulnerabilities.
Nat Cancer. 2021 Feb;2(2):141-156. doi: 10.1038/s43018-020-00159-4. Epub 2021 Jan 11.

本文引用的文献

1
miTALOS v2: Analyzing Tissue Specific microRNA Function.
PLoS One. 2016 Mar 21;11(3):e0151771. doi: 10.1371/journal.pone.0151771. eCollection 2016.
2
The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux.
J Clin Invest. 2016 Jan;126(1):12-22. doi: 10.1172/JCI77812. Epub 2016 Jan 4.
3
Predicting effective microRNA target sites in mammalian mRNAs.
Elife. 2015 Aug 12;4:e05005. doi: 10.7554/eLife.05005.
4
Ubc9 Impairs Activation of the Brown Fat Energy Metabolism Program in Human White Adipocytes.
Mol Endocrinol. 2015 Sep;29(9):1320-33. doi: 10.1210/me.2015-1084. Epub 2015 Jul 20.
5
Transcriptional Regulatory Circuits Controlling Brown Fat Development and Activation.
Diabetes. 2015 Jul;64(7):2369-75. doi: 10.2337/db15-0203. Epub 2015 Jun 7.
6
Genetic and functional characterization of clonally derived adult human brown adipocytes.
Nat Med. 2015 Apr;21(4):389-94. doi: 10.1038/nm.3819. Epub 2015 Mar 16.
8
Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis.
J Clin Invest. 2015 Feb;125(2):478-86. doi: 10.1172/JCI78362. Epub 2015 Feb 2.
9
miR-30 promotes thermogenesis and the development of beige fat by targeting RIP140.
Diabetes. 2015 Jun;64(6):2056-68. doi: 10.2337/db14-1117. Epub 2015 Jan 9.
10
The biological functions of miRNAs: lessons from in vivo studies.
Trends Cell Biol. 2015 Mar;25(3):137-47. doi: 10.1016/j.tcb.2014.11.004. Epub 2014 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验