Gopal Pooja, Yee Michelle, Sarathy Jickky, Low Jian Liang, Sarathy Jansy P, Kaya Firat, Dartois Véronique, Gengenbacher Martin, Dick Thomas
Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Republic of Singapore.
Public Health Research Institute, Rutgers-New Jersey Medical School , Newark, New Jersey 07103, United States.
ACS Infect Dis. 2016 Sep 9;2(9):616-626. doi: 10.1021/acsinfecdis.6b00070. Epub 2016 Aug 8.
Pyrazinamide (PZA) is a critical component of first- and second-line treatments of tuberculosis (TB), yet its mechanism of action largely remains an enigma. We carried out a genetic screen to isolate Mycobacterium bovis BCG mutants resistant to pyrazinoic acid (POA), the bioactive derivative of PZA, followed by whole genome sequencing of 26 POA resistant strains. Rather than finding mutations in the proposed candidate targets fatty acid synthase I and ribosomal protein S1, we found resistance conferring mutations in two pathways: missense mutations in aspartate decarboxylase panD, involved in the synthesis of the essential acyl carrier coenzyme A (CoA), and frameshift mutations in the vitro nonessential polyketide synthase genes mas and ppsA-E, involved in the synthesis of the virulence factor phthiocerol dimycocerosate (PDIM). Probing for cross resistance to two structural analogs of POA, nicotinic acid and benzoic acid, showed that the analogs share the PDIM- but not the CoA-related mechanism of action with POA. We demonstrated that POA depletes CoA in wild-type bacteria, which is prevented by mutations in panD. Sequencing 10 POA-resistant Mycobacterium tuberculosis H37Rv isolates confirmed the presence of at least 2 distinct mechanisms of resistance to the drug. The emergence of resistance through the loss of a virulence factor in vitro may explain the lack of clear molecular patterns in PZA-resistant clinical isolates, other than mutations in the prodrug-converting enzyme. The apparent interference of POA with virulence pathways may contribute to the drug's excellent in vivo efficacy compared to its modest in vitro potency.
吡嗪酰胺(PZA)是结核病一线和二线治疗的关键组成部分,但其作用机制在很大程度上仍是个谜。我们进行了一项基因筛选,以分离出对吡嗪酸(POA)具有抗性的牛分枝杆菌卡介苗(Mycobacterium bovis BCG)突变体,POA是PZA的生物活性衍生物,随后对26株POA抗性菌株进行了全基因组测序。我们没有在提议的候选靶点脂肪酸合酶I和核糖体蛋白S1中发现突变,而是在两条途径中发现了赋予抗性的突变:参与必需酰基载体辅酶A(CoA)合成的天冬氨酸脱羧酶panD中的错义突变,以及参与毒力因子结核硬脂酸海藻糖二霉菌酸酯(PDIM)合成的体外非必需聚酮合酶基因mas和ppsA-E中的移码突变。对POA的两种结构类似物烟酸和苯甲酸的交叉抗性研究表明,这些类似物与POA具有相同的与PDIM相关的作用机制,但与CoA无关。我们证明POA会耗尽野生型细菌中的CoA,而panD中的突变可防止这种情况发生。对10株POA抗性结核分枝杆菌H37Rv分离株进行测序,证实了该药物至少存在2种不同的抗性机制。在体外通过丧失毒力因子而产生抗性,这可能解释了除前药转化酶突变外,PZA抗性临床分离株中缺乏明确分子模式的原因。POA对毒力途径的明显干扰可能是该药物体内疗效优异而体外效力一般的原因。