Suppr超能文献

持续释放一氧化氮的纳米颗粒在大鼠中心静脉导管模型中干扰耐甲氧西林金黄色葡萄球菌的黏附和生物膜形成。

Sustained Nitric Oxide-Releasing Nanoparticles Interfere with Methicillin-Resistant Staphylococcus aureus Adhesion and Biofilm Formation in a Rat Central Venous Catheter Model.

作者信息

Mihu Mircea Radu, Cabral Vitor, Pattabhi Rodney, Tar Moses T, Davies Kelvin P, Friedman Adam J, Martinez Luis R, Nosanchuk Joshua D

机构信息

Department of Medicine, Division of Critical Care, St. Anthony Hospital, Oklahoma City, Oklahoma, USA.

Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA.

出版信息

Antimicrob Agents Chemother. 2016 Dec 27;61(1). doi: 10.1128/AAC.02020-16. Print 2017 Jan.

Abstract

Staphylococcus aureus is frequently isolated in the setting of infections of indwelling medical devices, which are mediated by the microbe's ability to form biofilms on a variety of surfaces. Biofilm-embedded bacteria are more resistant to antimicrobial agents than their planktonic counterparts and often cause chronic infections and sepsis, particularly in patients with prolonged hospitalizations. In this study, we demonstrate that sustained nitric oxide-releasing nanoparticles (NO-np) interfere with S. aureus adhesion and prevent biofilm formation on a rat central venous catheter (CVC) model of infection. Confocal and scanning electron microscopy showed that NO-np-treated staphylococcal biofilms displayed considerably reduced thicknesses and bacterial numbers compared to those of control biofilms in vitro and in vivo, respectively. Although both phenotypes, planktonic and biofilm-associated staphylococci, of multiple clinical strains were susceptible to NO-np, bacteria within biofilms were more resistant to killing than their planktonic counterparts. Furthermore, chitosan, a biopolymer found in the exoskeleton of crustaceans and structurally integrated into the nanoparticles, seems to add considerable antimicrobial activity to the technology. Our findings suggest promising development and translational potential of NO-np for use as a prophylactic or therapeutic against bacterial biofilms on CVCs and other medical devices.

摘要

金黄色葡萄球菌经常在留置医疗设备感染的情况下被分离出来,这是由该微生物在各种表面形成生物膜的能力介导的。与浮游菌相比,生物膜包裹的细菌对抗菌剂更具抗性,并且常常导致慢性感染和败血症,尤其是在住院时间延长的患者中。在本研究中,我们证明持续释放一氧化氮的纳米颗粒(NO-np)会干扰金黄色葡萄球菌的黏附,并在大鼠中心静脉导管(CVC)感染模型上防止生物膜形成。共聚焦显微镜和扫描电子显微镜显示,与体外和体内的对照生物膜相比,经NO-np处理的葡萄球菌生物膜的厚度和细菌数量分别显著降低。尽管多种临床菌株的浮游菌和生物膜相关葡萄球菌这两种表型均对NO-np敏感,但生物膜内的细菌比浮游菌更难被杀死。此外,壳聚糖是一种存在于甲壳类动物外骨骼中的生物聚合物,在结构上整合到纳米颗粒中,似乎为该技术增添了相当大的抗菌活性。我们的研究结果表明,NO-np作为预防或治疗CVC和其他医疗设备上细菌生物膜的药物具有良好的开发和转化潜力。

相似文献

5
Eradication of Staphylococcus aureus Biofilm Infections Using Synthetic Antimicrobial Peptides.
J Infect Dis. 2017 Mar 15;215(6):975-983. doi: 10.1093/infdis/jix062.
7
Eradication of Staphylococcus aureus Catheter-Related Biofilm Infections Using ML:8 and Citrox.
Antimicrob Agents Chemother. 2016 Sep 23;60(10):5968-75. doi: 10.1128/AAC.00910-16. Print 2016 Oct.
8
Chitosan derivatives co-delivering nitric oxide and methicillin for the effective therapy to the methicillin-resistant S. aureus infection.
Carbohydr Polym. 2020 Apr 15;234:115928. doi: 10.1016/j.carbpol.2020.115928. Epub 2020 Jan 30.

引用本文的文献

1
A cutting-edge new framework for the pain management in children: nanotechnology.
Front Mol Neurosci. 2024 Sep 10;17:1391092. doi: 10.3389/fnmol.2024.1391092. eCollection 2024.
2
Metal nanoparticles as inhibitors of enzymes and toxins of multidrug-resistant .
Infect Med (Beijing). 2023 Nov 21;2(4):294-307. doi: 10.1016/j.imj.2023.11.006. eCollection 2023 Dec.
4
Nitric oxide-loaded nano- and microparticle platforms serving as potential new antifungal therapeutics.
Fungal Biol. 2023 Jul-Aug;127(7-8):1224-1230. doi: 10.1016/j.funbio.2023.01.007. Epub 2023 Jan 24.
5
Curcumin-Functionalized Graphene Oxide Strongly Prevents Adhesion and Biofilm Formation.
Pharmaceuticals (Basel). 2023 Feb 11;16(2):275. doi: 10.3390/ph16020275.
6
SiO nanosphere coated tough catheter with superhydrophobic surface for improving the antibacteria and hemocompatibility.
Front Bioeng Biotechnol. 2023 Jan 10;10:1067139. doi: 10.3389/fbioe.2022.1067139. eCollection 2022.
7
Nanotechnology in interventional cardiology: A state-of-the-art review.
Int J Cardiol Heart Vasc. 2022 Nov 18;43:101149. doi: 10.1016/j.ijcha.2022.101149. eCollection 2022 Dec.
8
Antibacterial gas therapy: Strategies, advances, and prospects.
Bioact Mater. 2022 Nov 11;23:129-155. doi: 10.1016/j.bioactmat.2022.10.008. eCollection 2023 May.
9
Non-antibiotic strategies for prevention and treatment of internalized .
Front Microbiol. 2022 Aug 31;13:974984. doi: 10.3389/fmicb.2022.974984. eCollection 2022.
10
Nanotechnology as a tool to advance research and treatment of non-oncologic urogenital diseases.
Ther Adv Urol. 2022 Jul 26;14:17562872221109023. doi: 10.1177/17562872221109023. eCollection 2022 Jan-Dec.

本文引用的文献

1
Chitosan Derivatives Active against Multidrug-Resistant Bacteria and Pathogenic Fungi: In Vivo Evaluation as Topical Antimicrobials.
Mol Pharm. 2016 Oct 3;13(10):3578-3589. doi: 10.1021/acs.molpharmaceut.6b00764. Epub 2016 Sep 21.
4
Sticky Matrix: Adhesion Mechanism of the Staphylococcal Polysaccharide Intercellular Adhesin.
ACS Nano. 2016 Mar 22;10(3):3443-52. doi: 10.1021/acsnano.5b07515. Epub 2016 Feb 23.
8
The additional costs of catheter-related bloodstream infections in intensive care units.
Am J Infect Control. 2015 Oct 1;43(10):1046-9. doi: 10.1016/j.ajic.2015.05.022. Epub 2015 Jul 6.
9
Anti-Biofilm Efficacy of Dual-Action Nitric Oxide-Releasing Alkyl Chain Modified Poly(amidoamine) Dendrimers.
Mol Pharm. 2015 May 4;12(5):1573-83. doi: 10.1021/acs.molpharmaceut.5b00006. Epub 2015 Apr 15.
10
Nanoparticle (star polymer) delivery of nitric oxide effectively negates Pseudomonas aeruginosa biofilm formation.
Biomacromolecules. 2014 Jul 14;15(7):2583-9. doi: 10.1021/bm500422v. Epub 2014 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验