Suppr超能文献

癌症药物组合发现的预测方法。

Predictive approaches for drug combination discovery in cancer.

机构信息

Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.

Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.

出版信息

Brief Bioinform. 2018 Mar 1;19(2):263-276. doi: 10.1093/bib/bbw104.

Abstract

Drug combinations have been proposed as a promising therapeutic strategy to overcome drug resistance and improve efficacy of monotherapy regimens in cancer. This strategy aims at targeting multiple components of this complex disease. Despite the increasing number of drug combinations in use, many of them were empirically found in the clinic, and the molecular mechanisms underlying these drug combinations are often unclear. These challenges call for rational, systematic approaches for drug combination discovery. Although high-throughput screening of single-agent therapeutics has been successfully implemented, it is not feasible to test all possible drug combinations, even for a reduced subset of anticancer drugs. Hence, in vitro and in vivo screening of a large number of drug combinations are not practical. Therefore, devising computational methods to efficiently explore the space of drug combinations and to discover efficacious combinations has attracted a lot of attention from the scientific community in the past few years. Nevertheless, in the absence of consensus regarding the computational approaches used to predict efficacious drug combinations, a plethora of methods, techniques and hypotheses have been developed to date, while the research field lacks an elaborate categorization of the existing computational methods and the available data sources. In this manuscript, we review and categorize the state-of-the-art computational approaches for drug combination prediction, and elaborate on the limitations of these methods and the existing challenges. We also discuss about the recent pan-cancer drug combination data sets and their importance in revising the available methods or developing more performant approaches.

摘要

药物联合治疗已被提议作为一种有前途的治疗策略,以克服耐药性并提高癌症单药治疗方案的疗效。该策略旨在针对这种复杂疾病的多个组成部分进行靶向治疗。尽管目前使用的药物联合治疗方案数量不断增加,但其中许多方案是在临床上凭经验发现的,而且这些药物联合治疗方案的分子机制往往不清楚。这些挑战需要合理、系统的方法来发现药物联合治疗方案。虽然已经成功实施了针对单一药物治疗的高通量筛选,但即使是对一组减少的抗癌药物,也不可能测试所有可能的药物联合治疗方案。因此,对大量药物联合治疗方案进行体外和体内筛选是不切实际的。因此,设计计算方法来有效地探索药物联合治疗方案的空间并发现有效的联合治疗方案,在过去几年中引起了科学界的广泛关注。然而,由于缺乏用于预测有效药物联合治疗方案的计算方法的共识,迄今为止已经开发了大量的方法、技术和假设,而研究领域缺乏对现有计算方法和可用数据源的精心分类。在本文中,我们回顾和分类了用于药物联合预测的最先进的计算方法,并详细说明了这些方法的局限性和现有挑战。我们还讨论了最近的泛癌药物联合治疗数据集及其在修改现有方法或开发更具性能的方法方面的重要性。

相似文献

1
Predictive approaches for drug combination discovery in cancer.
Brief Bioinform. 2018 Mar 1;19(2):263-276. doi: 10.1093/bib/bbw104.
2
In silico drug combination discovery for personalized cancer therapy.
BMC Syst Biol. 2018 Mar 19;12(Suppl 2):16. doi: 10.1186/s12918-018-0546-1.
3
Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles.
Artif Intell Med. 2017 Nov;83:35-43. doi: 10.1016/j.artmed.2017.05.008. Epub 2017 Jun 3.
5
Machine learning approaches for drug combination therapies.
Brief Bioinform. 2021 Nov 5;22(6). doi: 10.1093/bib/bbab293.
7
Bioinformatics Approaches for Anti-cancer Drug Discovery.
Curr Drug Targets. 2020;21(1):3-17. doi: 10.2174/1389450120666190923162203.
9
Network Propagation Predicts Drug Synergy in Cancers.
Cancer Res. 2018 Sep 15;78(18):5446-5457. doi: 10.1158/0008-5472.CAN-18-0740. Epub 2018 Jul 27.
10
DrugComb: an integrative cancer drug combination data portal.
Nucleic Acids Res. 2019 Jul 2;47(W1):W43-W51. doi: 10.1093/nar/gkz337.

引用本文的文献

1
PolyLLM: polypharmacy side effect prediction via LLM-based SMILES encodings.
Front Pharmacol. 2025 Jul 31;16:1617142. doi: 10.3389/fphar.2025.1617142. eCollection 2025.
3
Lipid-based nanocarriers in combination chemotherapy: a promising strategy for advanced skin cancer management.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Jul 15. doi: 10.1007/s00210-025-04431-1.
4
Innovative horizons: harnessing drug repositioning for targeted therapeutics in colorectal cancer.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Jul 1. doi: 10.1007/s00210-025-04289-3.
5
Anticancer drug synergy prediction based on CatBoost.
PeerJ Comput Sci. 2025 May 19;11:e2829. doi: 10.7717/peerj-cs.2829. eCollection 2025.
6
Sensitive detection of synthetic response to cancer immunotherapy driven by gene paralog pairs.
Patterns (N Y). 2025 Feb 25;6(3):101184. doi: 10.1016/j.patter.2025.101184. eCollection 2025 Mar 14.
8
Computational frameworks transform antagonism to synergy in optimizing combination therapies.
NPJ Digit Med. 2025 Jan 19;8(1):44. doi: 10.1038/s41746-025-01435-2.
9
Predicting effective drug combinations for cancer treatment using a graph-based approach.
Synth Syst Biotechnol. 2024 Sep 11;10(1):148-155. doi: 10.1016/j.synbio.2024.09.003. eCollection 2025.
10
Sensitive detection of synthetic response to cancer immunotherapy driven by gene paralog pairs.
bioRxiv. 2024 Jul 4:2024.07.02.601809. doi: 10.1101/2024.07.02.601809.

本文引用的文献

1
Assessment of pharmacogenomic agreement.
F1000Res. 2016 May 9;5:825. doi: 10.12688/f1000research.8705.1. eCollection 2016.
2
Combine and conquer: challenges for targeted therapy combinations in early phase trials.
Nat Rev Clin Oncol. 2017 Jan;14(1):57-66. doi: 10.1038/nrclinonc.2016.96. Epub 2016 Jul 5.
3
Reproducible pharmacogenomic profiling of cancer cell line panels.
Nature. 2016 May 19;533(7603):333-7. doi: 10.1038/nature17987.
5
An Unbiased Oncology Compound Screen to Identify Novel Combination Strategies.
Mol Cancer Ther. 2016 Jun;15(6):1155-62. doi: 10.1158/1535-7163.MCT-15-0843. Epub 2016 Mar 16.
6
Searching for Drug Synergy in Complex Dose-Response Landscapes Using an Interaction Potency Model.
Comput Struct Biotechnol J. 2015 Sep 25;13:504-13. doi: 10.1016/j.csbj.2015.09.001. eCollection 2015.
7
Combination therapy with BRAF and MEK inhibitors for melanoma: latest evidence and place in therapy.
Ther Adv Med Oncol. 2016 Jan;8(1):48-56. doi: 10.1177/1758834015616934.
8
PharmacoGx: an R package for analysis of large pharmacogenomic datasets.
Bioinformatics. 2016 Apr 15;32(8):1244-6. doi: 10.1093/bioinformatics/btv723. Epub 2015 Dec 9.
9
Pharmacogenomic agreement between two cancer cell line data sets.
Nature. 2015 Dec 3;528(7580):84-7. doi: 10.1038/nature15736. Epub 2015 Nov 16.
10
Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset.
Cancer Discov. 2015 Nov;5(11):1210-23. doi: 10.1158/2159-8290.CD-15-0235. Epub 2015 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验