Suppr超能文献

细胞黏附分子的活性依赖性蛋白水解切割调节兴奋性突触的发育和功能。

Activity-dependent proteolytic cleavage of cell adhesion molecules regulates excitatory synaptic development and function.

作者信息

Nagappan-Chettiar Sivapratha, Johnson-Venkatesh Erin M, Umemori Hisashi

机构信息

Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.

Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Neurosci Res. 2017 Mar;116:60-69. doi: 10.1016/j.neures.2016.12.003. Epub 2016 Dec 10.

Abstract

Activity-dependent remodeling of neuronal connections is critical to nervous system development and function. These processes rely on the ability of synapses to detect neuronal activity and translate it into the appropriate molecular signals. One way to convert neuronal activity into downstream signaling is the proteolytic cleavage of cell adhesion molecules (CAMs). Here we review studies demonstrating the mechanisms by which proteolytic processing of CAMs direct the structural and functional remodeling of excitatory glutamatergic synapses during development and plasticity. Specifically, we examine how extracellular proteolytic cleavage of CAMs switches on or off molecular signals to 1) permit, drive, or restrict synaptic maturation during development and 2) strengthen or weaken synapses during adult plasticity. We will also examine emerging studies linking improper activity-dependent proteolytic processing of CAMs to neurological disorders such as schizophrenia, brain tumors, and Alzheimer's disease. Together these findings suggest that the regulation of activity-dependent proteolytic cleavage of CAMs is vital to proper brain development and lifelong function.

摘要

神经元连接的活动依赖性重塑对神经系统的发育和功能至关重要。这些过程依赖于突触检测神经元活动并将其转化为适当分子信号的能力。将神经元活动转化为下游信号传导的一种方式是细胞粘附分子(CAMs)的蛋白水解切割。在这里,我们回顾了一些研究,这些研究证明了在发育和可塑性过程中,CAMs的蛋白水解加工指导兴奋性谷氨酸能突触的结构和功能重塑的机制。具体而言,我们研究了CAMs的细胞外蛋白水解切割如何开启或关闭分子信号,以1)在发育过程中允许、驱动或限制突触成熟,以及2)在成年可塑性过程中增强或减弱突触。我们还将研究将CAMs不适当的活动依赖性蛋白水解加工与精神分裂症、脑肿瘤和阿尔茨海默病等神经系统疾病联系起来的新兴研究。这些发现共同表明,对CAMs活动依赖性蛋白水解切割的调节对大脑的正常发育和终身功能至关重要。

相似文献

1
Activity-dependent proteolytic cleavage of cell adhesion molecules regulates excitatory synaptic development and function.
Neurosci Res. 2017 Mar;116:60-69. doi: 10.1016/j.neures.2016.12.003. Epub 2016 Dec 10.
2
Proteolytic remodeling of the synaptic cell adhesion molecules (CAMs) by metzincins in synaptic plasticity.
Neurochem Res. 2013 Jun;38(6):1113-21. doi: 10.1007/s11064-012-0919-6. Epub 2012 Nov 4.
3
Intercellular protein-protein interactions at synapses.
Protein Cell. 2014 Jun;5(6):420-44. doi: 10.1007/s13238-014-0054-z. Epub 2014 Apr 23.
4
Trafficking and Activity of Glutamate and GABA Receptors: Regulation by Cell Adhesion Molecules.
Neuroscientist. 2020 Oct-Dec;26(5-6):415-437. doi: 10.1177/1073858420921117. Epub 2020 May 23.
5
Synaptic Cell Adhesion Molecules in Alzheimer's Disease.
Neural Plast. 2016;2016:6427537. doi: 10.1155/2016/6427537. Epub 2016 May 3.
6
Identification of Protein Tyrosine Phosphatase Receptor Type O (PTPRO) as a Synaptic Adhesion Molecule that Promotes Synapse Formation.
J Neurosci. 2017 Oct 11;37(41):9828-9843. doi: 10.1523/JNEUROSCI.0729-17.2017. Epub 2017 Sep 4.
7
Cell adhesion and homeostatic synaptic plasticity.
Neuropharmacology. 2014 Mar;78:23-30. doi: 10.1016/j.neuropharm.2013.03.015. Epub 2013 Mar 28.
8
Synaptic cell adhesion molecules.
Adv Exp Med Biol. 2012;970:97-128. doi: 10.1007/978-3-7091-0932-8_5.
9
Cell adhesion molecules at the synapse.
Front Biosci. 2006 Sep 1;11:2400-19. doi: 10.2741/1978.
10
Tuning synapses by proteolytic remodeling of the adhesive surface.
Curr Opin Neurobiol. 2015 Dec;35:148-55. doi: 10.1016/j.conb.2015.08.005. Epub 2015 Aug 27.

引用本文的文献

1
Hypoxia Induces Extensive Protein and Proteolytic Remodeling of the Cell Surface in Pancreatic Adenocarcinoma (PDAC) Cell Lines.
J Proteome Res. 2025 Jun 6;24(6):2791-2800. doi: 10.1021/acs.jproteome.4c01037. Epub 2025 May 1.
2
Activity-Dependent Synapse Refinement: From Mechanisms to Molecules.
Neuroscientist. 2024 Dec;30(6):673-689. doi: 10.1177/10738584231170167. Epub 2023 May 4.
3
γ-secretase promotes Drosophila postsynaptic development through the cleavage of a Wnt receptor.
Dev Cell. 2022 Jul 11;57(13):1643-1660.e7. doi: 10.1016/j.devcel.2022.05.006. Epub 2022 Jun 1.
6
Shed CNTNAP2 ectodomain is detectable in CSF and regulates Ca homeostasis and network synchrony via PMCA2/ATP2B2.
Neuron. 2022 Feb 16;110(4):627-643.e9. doi: 10.1016/j.neuron.2021.11.025. Epub 2021 Dec 17.
7
Identification of plasma proteins relating to brain neurodegeneration and vascular pathology in cognitively normal individuals.
Alzheimers Dement (Amst). 2021 Sep 27;13(1):e12240. doi: 10.1002/dad2.12240. eCollection 2021.
8
Heparan Sulfated Glypican-4 Is Released from Astrocytes by Proteolytic Shedding and GPI-Anchor Cleavage Mechanisms.
eNeuro. 2021 Aug 9;8(4). doi: 10.1523/ENEURO.0069-21.2021. Print 2021 Jul-Aug.
9
Long-term plasticity of inhibitory synapses in the hippocampus and spatial learning depends on matrix metalloproteinase 3.
Cell Mol Life Sci. 2021 Mar;78(5):2279-2298. doi: 10.1007/s00018-020-03640-6. Epub 2020 Sep 21.
10
Depolarization-dependent Induction of Site-specific Changes in Sialylation on linked Glycoproteins in Rat Nerve Terminals.
Mol Cell Proteomics. 2020 Sep;19(9):1418-1435. doi: 10.1074/mcp.RA119.001896. Epub 2020 Jun 9.

本文引用的文献

2
Long-Term Potentiation: From CaMKII to AMPA Receptor Trafficking.
Annu Rev Physiol. 2016;78:351-65. doi: 10.1146/annurev-physiol-021014-071753.
3
Proteases decode the extracellular matrix cryptome.
Biochimie. 2016 Mar;122:300-13. doi: 10.1016/j.biochi.2015.09.016. Epub 2015 Sep 14.
4
Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion.
Cell. 2015 May 7;161(4):803-16. doi: 10.1016/j.cell.2015.04.012. Epub 2015 Apr 23.
5
ICAM-5 affects spine maturation by regulation of NMDA receptor binding to α-actinin.
Biol Open. 2015 Jan 8;4(2):125-36. doi: 10.1242/bio.201410439.
6
Activity-dependent inhibitory synapse remodeling through gephyrin phosphorylation.
Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):E65-72. doi: 10.1073/pnas.1411170112. Epub 2014 Dec 22.
7
Effects of ADAM10 deletion on Notch-1 signaling pathway and neuronal maintenance in adult mouse brain.
Gene. 2015 Jan 25;555(2):150-8. doi: 10.1016/j.gene.2014.10.056. Epub 2014 Nov 1.
9
Endostatin is a trans-synaptic signal for homeostatic synaptic plasticity.
Neuron. 2014 Aug 6;83(3):616-29. doi: 10.1016/j.neuron.2014.07.003. Epub 2014 Jul 24.
10
Genetic removal of matrix metalloproteinase 9 rescues the symptoms of fragile X syndrome in a mouse model.
J Neurosci. 2014 Jul 23;34(30):9867-79. doi: 10.1523/JNEUROSCI.1162-14.2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验