Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic.
Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy.
Biochim Biophys Acta Gen Subj. 2017 May;1861(5 Pt B):1246-1263. doi: 10.1016/j.bbagen.2016.12.008. Epub 2016 Dec 13.
Guanine quadruplexes (GQs) play vital roles in many cellular processes and are of much interest as drug targets. In contrast to the availability of many structural studies, there is still limited knowledge on GQ folding.
We review recent molecular dynamics (MD) simulation studies of the folding of GQs, with an emphasis paid to the human telomeric DNA GQ. We explain the basic principles and limitations of all types of MD methods used to study unfolding and folding in a way accessible to non-specialists. We discuss the potential role of G-hairpin, G-triplex and alternative GQ intermediates in the folding process. We argue that, in general, folding of GQs is fundamentally different from funneled folding of small fast-folding proteins, and can be best described by a kinetic partitioning (KP) mechanism. KP is a competition between at least two (but often many) well-separated and structurally different conformational ensembles.
The KP mechanism is the only plausible way to explain experiments reporting long time-scales of GQ folding and the existence of long-lived sub-states. A significant part of the natural partitioning of the free energy landscape of GQs comes from the ability of the GQ-forming sequences to populate a large number of syn-anti patterns in their G-tracts. The extreme complexity of the KP of GQs typically prevents an appropriate description of the folding landscape using just a few order parameters or collective variables.
We reconcile available computational and experimental studies of GQ folding and formulate basic principles characterizing GQ folding landscapes. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
鸟嘌呤四链体 (GQ) 在许多细胞过程中发挥着重要作用,并且作为药物靶点备受关注。与许多结构研究的可用性相比,对 GQ 折叠的了解仍然有限。
我们回顾了最近关于 GQ 折叠的分子动力学 (MD) 模拟研究,重点介绍了人类端粒 DNA GQ。我们解释了用于研究解折叠和折叠的所有类型 MD 方法的基本原理和局限性,使非专业人士也能理解。我们讨论了 G-发夹、G-三聚体和替代 GQ 中间体在折叠过程中的潜在作用。我们认为,一般来说,GQ 的折叠从根本上不同于快速折叠小蛋白的漏斗形折叠,并且可以通过动力学分区 (KP) 机制来最好地描述。KP 是至少两个(但通常是许多)完全分离且结构不同的构象集合之间的竞争。
KP 机制是解释报告 GQ 折叠的长时间尺度和存在长寿命亚态的实验的唯一合理方式。GQ 自由能景观的自然分区的重要部分来自 GQ 形成序列在其 G 链段中占据大量顺式-反式模式的能力。GQ 的 KP 极其复杂,通常无法仅使用几个序参数或集体变量来适当描述折叠景观。
我们协调了可用的 GQ 折叠计算和实验研究,并制定了表征 GQ 折叠景观的基本原理。本文是题为“G-四链体”的特刊的一部分,客座编辑:Concetta Giancola 博士和 Daniela Montesarchio 博士。