Suppr超能文献

等离子体纳米间隙增强拉曼散射与纳米粒子。

Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.

机构信息

Department of Chemistry, Seoul National University , Seoul 08826, South Korea.

Research Center for Convergence NanoRaman Technology (RC2NT), Korea Research Institute of Chemical Technology (KRICT) , DaeJeon 34114, South Korea.

出版信息

Acc Chem Res. 2016 Dec 20;49(12):2746-2755. doi: 10.1021/acs.accounts.6b00409. Epub 2016 Nov 8.

Abstract

Plasmonic coupling-based electromagnetic field localization and enhancement are becoming increasingly important in chemistry, nanoscience, materials science, physics, and engineering over the past decade, generating a number of new concepts and applications. Among the plasmonically coupled nanostructures, metal nanostructures with nanogaps have been of special interest due to their ultrastrong electromagnetic fields and controllable optical properties that can be useful for a variety of signal enhancements such as surface-enhanced Raman scattering (SERS). The Raman scattering process is highly inefficient, with a very small cross-section, and Raman signals are often poorly reproducible, meaning that very strong, controllable SERS is needed to obtain reliable Raman signals with metallic nanostructures and thus open up new avenues for a variety of Raman-based applications. More specifically, plasmonically coupled metallic nanostructures with ultrasmall (∼1 nm or smaller) nanogaps can generate very strong and tunable electromagnetic fields that can generate strong SERS signals from Raman dyes in the gap, and plasmonic nanogap-enhanced Raman scattering can be defined as Raman signal enhancement from plasmonic nanogap particles with ∼1 nm gaps. However, these promising nanostructures with extraordinarily strong optical signals have shown limited use for practical applications, largely due to the lack of design principles, high-yield synthetic strategies with nanometer-level structural control and reproducibility, and systematic, reliable single-molecule/single-particle-level studies on their optical properties. All these are extremely important challenges because even small changes (<1 nm) in the structure of the coupled plasmonic nanogaps can significantly affect the plasmon mode and signal intensity. In this Account, we examine and summarize recent breakthroughs and advances in plasmonic nanogap-enhanced Raman scattering with metal nanogap particles with respect to the design and synthesis of plasmonic nanogap structures, as well as ultrasensitive and quantitative Raman signal detection using these structures. The applications and prospects of plasmonic nanogap particle-based SERS are also discussed. In particular, reliable synthetic and measurement strategies for plasmonically coupled nanostructures with ∼1 nm gap, in which both the nanogap size and the position of a Raman-active molecule in the gap can be controlled with nanometer/sub-nanometer-level precision, can address important issues regarding the synthesis and optical properties of plasmonic nanostructures, including structural and signal reproducibility. Further, single-molecule/single-particle-level studies on the plasmonic properties of these nanogap structures revealed that these particles can generate ultrastrong, quantifiable Raman signals in a highly reproducible manner.

摘要

基于等离子体耦合的电磁场局域化和增强在过去十年中在化学、纳米科学、材料科学、物理和工程领域变得越来越重要,产生了许多新概念和应用。在等离子体耦合的纳米结构中,由于具有超强度电磁场和可控制的光学性质,金属纳米结构具有纳米间隙,因此特别受到关注,这些性质可用于各种信号增强,例如表面增强拉曼散射(SERS)。拉曼散射过程的效率非常低,横截面非常小,拉曼信号通常重复性很差,这意味着需要非常强、可控的 SERS 才能用金属纳米结构获得可靠的拉曼信号,从而为各种基于拉曼的应用开辟新途径。更具体地说,具有超小(∼1nm 或更小)纳米间隙的等离子体耦合金属纳米结构可以产生非常强和可调谐的电磁场,从而可以在间隙中从拉曼染料产生强 SERS 信号,并且可以将等离子体纳米间隙增强拉曼散射定义为具有∼1nm 间隙的等离子体纳米颗粒的拉曼信号增强。然而,这些具有非凡光学信号的有前途的纳米结构在实际应用中显示出了有限的用途,这主要是由于缺乏设计原则、具有纳米级结构控制和重复性的高产率合成策略,以及对其光学性质进行系统、可靠的单分子/单颗粒级研究。所有这些都是极其重要的挑战,因为即使是耦合等离子体纳米间隙结构的微小变化(<1nm)也会显著影响等离子体模式和信号强度。在本综述中,我们研究并总结了金属纳米间隙颗粒的等离子体纳米间隙增强拉曼散射方面的最新突破和进展,包括等离子体纳米间隙结构的设计和合成,以及使用这些结构进行超灵敏和定量拉曼信号检测。还讨论了基于等离子体纳米间隙颗粒的 SERS 的应用和前景。特别是,具有∼1nm 间隙的等离子体耦合纳米结构的可靠合成和测量策略,其中纳米间隙的大小和拉曼活性分子在间隙中的位置都可以用纳米/亚纳米级精度控制,可以解决等离子体纳米结构的合成和光学性质的重要问题,包括结构和信号的可重复性。此外,这些纳米间隙结构的等离子体特性的单分子/单颗粒级研究表明,这些颗粒可以以高度可重复的方式产生超强度、可量化的拉曼信号。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验