Suppr超能文献

扭曲分子的故事。对映选择性光反应:通过非联苯型对映异构体控制光诱导的不对称转变。

Tale of Twisted Molecules. Atropselective Photoreactions: Taming Light Induced Asymmetric Transformations through Non-biaryl Atropisomers.

机构信息

Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108, United States.

出版信息

Acc Chem Res. 2016 Dec 20;49(12):2713-2724. doi: 10.1021/acs.accounts.6b00357. Epub 2016 Nov 17.

Abstract

Photochemical transformations are a powerful tool in organic synthesis to access structurally complex and diverse synthetic building blocks. However, this great potential remains untapped in the mainstream synthetic community due to the challenges associated with stereocontrol originating from excited state(s). The finite lifetime of an excited state and nearly barrierless subsequent processes present significant challenges in manipulating the stereochemical outcome of a photochemical reaction. Several methodologies were developed to address this bottleneck including photoreactions in confined media and preorganization through noncovalent interactions resulting in stereoenhancement. Yet, stereocontrol in photochemical reactions that happen in solution in the absence of organized assemblies remained largely unaddressed. In an effort to develop a general and reliable methodology, our lab has been exploring non-biaryl atropisomers as an avenue to perform asymmetric phototransformations. Atropisomers are chiral molecules that arise due to the restricted rotation around a single bond (chiral axis) whose energy barrier to rotation is determined by nonbonding interactions (most often by steric hindrance) with appropriate substituents. Thus, atropisomeric substrates are chirally preorganized during the photochemical transformation and translate their chiral information to the expected photoproducts. This strategy, where "axial to point chirality transfer" occurs during the photochemical reaction, is a hybrid of the successful Curran's prochiral auxiliary approach involving atropisomers in thermal reactions and the Havinga's NEER principle (nonequilibrating excited-state rotamers) for photochemical transformations. We have investigated this strategy in order to probe various aspects such as regio-, enantio-, diastereo-, and chemoselectivity in several synthetically useful phototransformations including 6π-photocyclization, 4π-ring closure, Norrish-Yang photoreactions, Paternò-Büchi reaction, and [2 + 2]- and [5 + 2]-photocycloaddition. The investigations detailed in this Account clearly signify the scope of our strategy in accessing chirally enriched products during phototransformations. Simple design modifications such as tailoring the steric handle in atropisomers to hold reactive units resulted in permanently locked/traceless axial chirality in addition to incorporating multiple stereocenters in already complex scaffolds obtained from phototransformation. Further improvements allowed us to employ low energy visible light rather than high energy UV light without compromising the stereoenrichment in the photoproducts. Continued investigations on atropisomeric scaffolds have unraveled new design features, with outcomes that are unique and unprecedented for excited state reactivity. For example, we have established that reactive spin states (singlet or triplet excited state) profoundly influence the stereochemical outcome of an atropselective phototransformation. In general, the photochemistry and photophysics of atropisomeric substrates differ significantly from their achiral counterparts irrespective of having the same chromophore initiating the excited state reactivity. The ability of axially chiral chromophores to impart stereoenrichment in the intramolecular photoreactions appears to be promising. A challenging endeavor for the "axial to point chirality transfer" strategy is to enhance stereoenrichment or alter chemical reactivity in intermolecular photoreactions. Insights gained from our investigations will serve as a platform to venture into more complicated yet fruitful research in terms of broad synthetic utility.

摘要

光化学转化是一种在有机合成中获取结构复杂和多样化的合成砌块的有力工具。然而,由于与激发态相关的立体控制问题,这种巨大的潜力在主流合成界仍未得到开发。激发态的有限寿命和几乎无阻碍的后续过程在操纵光化学反应的立体化学结果方面带来了重大挑战。已经开发了几种方法来解决这个瓶颈问题,包括在受限介质中的光反应和通过非共价相互作用进行的预组织,从而导致立体增强。然而,在没有组织组装的溶液中发生的光化学反应中的立体控制在很大程度上仍未得到解决。为了开发一种通用且可靠的方法,我们的实验室一直在探索非联苯轴手性异构体作为进行不对称光转化的途径。轴手性异构体是由于单键(手性轴)的受限旋转而产生的手性分子,其旋转的能垒由与适当取代基的非键相互作用(通常是空间位阻)决定。因此,在光化学转化过程中,轴手性底物在光化学转化过程中具有预先手性组织,并且将其手性信息转化为预期的光产物。这种策略是 Curran 的前手性辅助方法在热反应中涉及轴手性异构体和 Havinga 的 NEER 原则(非平衡激发态旋转异构体)在光化学反应中的成功的混合体。我们已经研究了这种策略,以探讨各种方面,例如在几种合成有用的光转化中,包括 6π-光环化、4π-环闭合、Norrish-Yang 光反应、Paternò-Büchi 反应以及[2 + 2]-和[5 + 2]-光环加成反应中的区域、对映、非对映和化学选择性。本账户中详细描述的研究清楚地表明了我们在光转化过程中获得手性丰富产物的策略的范围。通过对轴手性异构体的空间位阻进行简单的设计修改,例如将反应性单元固定在轴手性异构体中,除了在已经从光转化获得的复杂支架中引入多个立体中心外,还得到了永久锁定/无痕迹的轴向手性。进一步的改进使我们能够使用低能量可见光而不是高能紫外线,而不会影响光产物的立体富集。对轴手性支架的持续研究揭示了新的设计特点,其结果对于激发态反应性是独特且前所未有的。例如,我们已经确定了反应性自旋态(单重态或三重态激发态)对轴选择性光转化的立体化学结果有深远的影响。一般来说,无论是否具有引发激发态反应的相同发色团,轴手性底物的光化学和光物理性质都与它们的非手性对应物有很大的不同。轴向手性发色团在手性分子内光反应中赋予立体富集的能力似乎很有前景。对于“轴到手性转移”策略来说,一个具有挑战性的努力是增强在分子间光反应中的立体富集或改变化学反应性。从我们的研究中获得的见解将成为一个平台,为更复杂但富有成果的研究提供广泛的合成实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验