Moreau Adrien, Mercier Aurélie, Thériault Olivier, Boutjdir Mohamed, Burger Bettina, Keller Dagmar I, Chahine Mohamed
Centre de recherche de l'Institut universitaire en santé mentale de Québec, Québec City, Québec, Canada.
Cardiovascular Research Program, VA New York Harbor Healthcare, Brooklyn, New York, USA.
Can J Cardiol. 2017 Feb;33(2):269-278. doi: 10.1016/j.cjca.2016.10.001. Epub 2016 Oct 11.
The ability to differentiate patient-specific human induced pluripotent stem cells in cardiac myocytes (hiPSC-CM) offers novel perspectives for cardiovascular research. A number of studies, that reported mainly on current-voltage curves used hiPSC-CM to model voltage-gated Na channel (Na) dysfunction. However, the expression patterns and precise biophysical and pharmacological properties of Na channels from hiPSC-CM remain unknown. Our objective was to study the characteristics of Na channels from hiPSC-CM and assess the appropriateness of this novel cell model.
We generated hiPSC-CM using the recently described monolayer-based differentiation protocol.
hiPSC-CM expressed cardiac-specific markers, exhibited spontaneous electrical and contractile activities, and expressed distinct Na channels subtypes. Electrophysiological, pharmacological, and molecular characterizations revealed that, in addition to the main Na1.5 channel, the neuronal tetrodotoxin (TTX)-sensitive Na1.7 channel was also significantly expressed in hiPSC-CM. Most of the Na currents were resistant to TTX block. Therapeutic concentrations of lidocaine, a class I antiarrhythmic drug, also inhibited Na currents in a use-dependent manner. Na1.5 and Na1.7 expression and maturation patterns of hiPSC-CM and native human cardiac tissues appeared to be similar. The 4 Naβ regulatory subunits were expressed in hiPSC-CM, with β3 being the preponderant subtype.
The findings indicated that hiPSC-CM robustly express Na1.5 channels, which exhibited molecular and pharmacological properties similar to those in native cardiac tissues. Interestingly, neuronal Na1.7 channels were also expressed in hiPSC-CM and are likely to be responsible for the TTX-sensitive Na current.
将患者特异性人诱导多能干细胞分化为心肌细胞(hiPSC-CM)的能力为心血管研究提供了新的视角。许多主要报道电流-电压曲线的研究使用hiPSC-CM来模拟电压门控钠通道(Na)功能障碍。然而,hiPSC-CM中钠通道的表达模式以及精确的生物物理和药理学特性仍不清楚。我们的目的是研究hiPSC-CM中钠通道的特性,并评估这种新型细胞模型的适用性。
我们使用最近描述的基于单层的分化方案生成hiPSC-CM。
hiPSC-CM表达心脏特异性标志物,表现出自发性电活动和收缩活动,并表达不同的钠通道亚型。电生理、药理学和分子特征表明,除了主要的Na1.5通道外,神经元河豚毒素(TTX)敏感的Na1.7通道在hiPSC-CM中也有显著表达。大多数钠电流对TTX阻断具有抗性。I类抗心律失常药物利多卡因的治疗浓度也以使用依赖性方式抑制钠电流。hiPSC-CM和天然人类心脏组织中Na1.5和Na1.7的表达及成熟模式似乎相似。4种Naβ调节亚基在hiPSC-CM中表达,其中β3是主要亚型。
研究结果表明,hiPSC-CM强烈表达Na1.5通道,其分子和药理学特性与天然心脏组织中的相似。有趣的是,神经元Na1.7通道也在hiPSC-CM中表达,可能是TTX敏感钠电流的原因。