Suppr超能文献

多组态对密度泛函理论:一种处理强关联体系的新方法。

Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.

机构信息

Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States.

出版信息

Acc Chem Res. 2017 Jan 17;50(1):66-73. doi: 10.1021/acs.accounts.6b00471. Epub 2016 Dec 21.

Abstract

The electronic energy of a system provides the Born-Oppenheimer potential energy for internuclear motion and thus determines molecular structure and spectra, bond energies, conformational energies, reaction barrier heights, and vibrational frequencies. The development of more efficient and more accurate ways to calculate the electronic energy of systems with inherently multiconfigurational electronic structure is essential for many applications, including transition metal and actinide chemistry, systems with partially broken bonds, many transition states, and most electronically excited states. Inherently multiconfigurational systems are called strongly correlated systems or multireference systems, where the latter name refers to the need for using more than one ("multiple") configuration state function to provide a good zero-order reference wave function. This Account describes multiconfiguration pair-density functional theory (MC-PDFT), which was developed as a way to combine the advantages of wave function theory (WFT) and density functional theory (DFT) to provide a better treatment of strongly correlated systems. First we review background material: the widely used Kohn-Sham DFT (which uses only a single Slater determinant as reference wave function), multiconfiguration WFT methods that treat inherently multiconfigurational systems based on an active space, and previous attempts to combine multiconfiguration WFT with DFT. Then we review the formulation of MC-PDFT. It is a generalization of Kohn-Sham DFT in that the electron kinetic energy and classical electrostatic energy are calculated from a reference wave function, while the rest of the energy is obtained from a density functional. However, there are two main differences with respent to Kohn-Sham DFT: (i) The reference wave function is multiconfigurational rather than being a single Slater determinant. (ii) The density functional is a function of the total density and the on-top pair density rather than being a function of the spin-up and spin-down densities. In work carried out so far, the multiconfigurational wave function is a multiconfiguration self-consistent-field wave function. The new formulation has the advantage that the reference wave function has the correct spatial and spin symmetry and can describe bond dissociation (of both single and multiple bonds) and electronic excitations in a formally and physically correct way. We then review the formulation of density functionals in terms of the on-top pair density. Finally we review successful applications of the theory to bond energies and bond dissociation potential energy curves of main-group and transition metal bonds, to barrier heights (including pericyclic reactions), to proton affinities, to the hydrogen bond energy of water dimer, to ground- and excited-state charge transfer, to valence and Rydberg excitations of molecules, and to singlet-triplet splittings of radicals. We find that that MC-PDFT can give accurate results not only with complete-active-space multiconfiguration wave functions but also with generalized-active-space multiconfiguration wave functions, which are practical for larger numbers of active electrons and active orbitals than are complete-active-space wave functions. The separated-pair approximation, which is a special case of generalized active space self-consistent-field theory, is especially promising. MC-PDFT, because it requires much less computer time and storage than pure WFT methods, has the potential to open larger and more complex strongly correlated systems to accurate simulation.

摘要

系统的电子能量为核间运动提供了玻恩-奥本海默势能,从而决定了分子结构和光谱、键能、构象能、反应势垒高度和振动频率。开发更有效和更准确的方法来计算具有固有多组态电子结构的系统的电子能量对于许多应用至关重要,包括过渡金属和锕系元素化学、部分键断裂的系统、许多过渡态和大多数电子激发态。固有多组态系统被称为强关联系统或多参考系统,后者是指需要使用多个(“多个”)组态态函数来提供良好的零阶参考波函数。本账户描述了多组态对密度泛函理论(MC-PDFT),它是作为一种结合波函数理论(WFT)和密度泛函理论(DFT)的优势以提供对强关联系统更好的处理方法而开发的。首先,我们回顾背景材料:广泛使用的 Kohn-Sham DFT(仅使用单个 Slater 行列式作为参考波函数)、基于活动空间处理固有多组态系统的多组态 WFT 方法以及以前尝试将多组态 WFT 与 DFT 结合的方法。然后,我们回顾了 MC-PDFT 的公式。它是 Kohn-Sham DFT 的推广,因为电子动能和经典静电能是从参考波函数计算的,而其余的能量是从密度泛函获得的。然而,与 Kohn-Sham DFT 相比,它有两个主要区别:(i)参考波函数是多组态的,而不是单 Slater 行列式。(ii)密度泛函是总密度和顶部对密度的函数,而不是自旋向上和自旋向下密度的函数。到目前为止,在已完成的工作中,多组态波函数是多组态自洽场波函数。新的公式具有这样的优点,即参考波函数具有正确的空间和自旋对称性,可以以形式和物理上正确的方式描述键的解离(单键和双键)和电子激发。然后,我们根据顶部对密度回顾了密度泛函的公式。最后,我们回顾了该理论在主族和过渡金属键的键能和键解离势能曲线、势垒高度(包括周环反应)、质子亲和力、水二聚体的氢键能、基态和激发态电荷转移、分子的价和 Rydberg 激发以及自由基的单线态-三线态分裂等方面的成功应用。我们发现,MC-PDFT 不仅可以使用完整活动空间多组态波函数,而且可以使用广义活动空间多组态波函数获得准确的结果,后者对于比完整活动空间波函数更多的活动电子和活动轨道是实用的。分离对近似是广义活动空间自洽场理论的特例,具有很大的前景。MC-PDFT 因为它比纯 WFT 方法需要更少的计算机时间和存储空间,因此有可能为更准确的模拟打开更大和更复杂的强关联系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验