Young Jonathan H, Marcotte Edward M
Institute for Computational Engineering and Sciences, The University of Texas at Austin, Texas 78712.
Center for Systems and Synthetic Biology, The University of Texas at Austin, Texas 78712.
G3 (Bethesda). 2017 Feb 9;7(2):617-624. doi: 10.1534/g3.116.035915.
Characterizing genetic interactions is crucial to understanding cellular and organismal response to gene-level perturbations. Such knowledge can inform the selection of candidate disease therapy targets, yet experimentally determining whether genes interact is technically nontrivial and time-consuming. High-fidelity prediction of different classes of genetic interactions in multiple organisms would substantially alleviate this experimental burden. Under the hypothesis that functionally related genes tend to share common genetic interaction partners, we evaluate a computational approach to predict genetic interactions in , , and By leveraging knowledge of functional relationships between genes, we cross-validate predictions on known genetic interactions and observe high predictive power of multiple classes of genetic interactions in all three organisms. Additionally, our method suggests high-confidence candidate interaction pairs that can be directly experimentally tested. A web application is provided for users to query genes for predicted novel genetic interaction partners. Finally, by subsampling the known yeast genetic interaction network, we found that novel genetic interactions are predictable even when knowledge of currently known interactions is minimal.
表征基因相互作用对于理解细胞和生物体对基因水平扰动的反应至关重要。此类知识可为候选疾病治疗靶点的选择提供依据,然而,通过实验确定基因是否相互作用在技术上并非易事且耗时。对多种生物体中不同类型基因相互作用进行高保真预测将大大减轻这一实验负担。基于功能相关基因倾向于共享共同基因相互作用伙伴的假设,我们评估了一种计算方法来预测酿酒酵母、秀丽隐杆线虫和果蝇中的基因相互作用。通过利用基因之间功能关系的知识,我们对已知的基因相互作用进行交叉验证预测,并观察到在所有这三种生物体中多种类型基因相互作用都具有较高的预测能力。此外,我们的方法还提出了可直接进行实验测试的高可信度候选相互作用对。提供了一个网络应用程序供用户查询基因以获取预测的新型基因相互作用伙伴。最后,通过对已知酵母基因相互作用网络进行子采样,我们发现即使当前已知相互作用的知识很少,新型基因相互作用也是可预测的。