Suppr超能文献

胶体悬浮液中游离聚电解质的定量分析,揭示了聚电解质包裹的金纳米粒子产生毒性反应的根源。

Quantification of Free Polyelectrolytes Present in Colloidal Suspension, Revealing a Source of Toxic Responses for Polyelectrolyte-Wrapped Gold Nanoparticles.

机构信息

Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.

Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.

出版信息

Anal Chem. 2017 Feb 7;89(3):1823-1830. doi: 10.1021/acs.analchem.6b04161. Epub 2017 Jan 10.

Abstract

Polyelectrolyte (PE) wrapping of colloidal nanoparticles (NPs) is a standard method to control NP surface chemistry and charge. Because excess polyelectrolytes are usually employed in the surface modification process, it is critical to evaluate different purification strategies to obtain a clean final product and thus avoid ambiguities in the source of effects on biological systems. In this work, 4 nm diameter gold nanoparticles (AuNPs) were wrapped with 15 kDa poly(allylamine hydrochloride) (PAH), and three purification strategies were applied: (a) diafiltration or either (b) one round or (c) two rounds of centrifugation. The bacterial toxicity of each of these three PAH-AuNP samples was evaluated for the bacterium Shewanella oneidensis MR-1 and is quantitatively correlated with the amount of unbound PAH molecules in the AuNP suspensions, as judged by X-ray photoelectron spectroscopy, nuclear magnetic resonance experiments and quantification using fluorescent assay. Dialysis experiments show that, for a 15 kDa polyelectrolyte, a 50 kDa dialysis membrane is not sufficient to remove all PAH polymers. Together, these data showcase the importance of choosing a proper postsynthesis purification method for polyelectrolyte-wrapped NPs and reveal that apparent toxicity results may be due to unintended free wrapping agents such as polyelectrolytes.

摘要

聚电解质(PE)包裹胶体纳米粒子(NPs)是控制 NP 表面化学和电荷的标准方法。由于在表面改性过程中通常会使用过量的聚电解质,因此评估不同的纯化策略以获得纯净的最终产物至关重要,从而避免对生物系统影响的来源产生歧义。在这项工作中,直径为 4nm 的金纳米粒子(AuNPs)用 15kDa 聚(盐酸烯丙胺)(PAH)包裹,并应用了三种纯化策略:(a)渗滤或(b)一轮或(c)两轮离心。通过 X 射线光电子能谱、核磁共振实验和荧光测定定量评估这三种 PAH-AuNP 样品中的每一种对细菌 Shewanella oneidensis MR-1 的细菌毒性,并与 AuNP 悬浮液中未结合的 PAH 分子的量相关联。透析实验表明,对于 15kDa 的聚电解质,50kDa 的透析膜不足以去除所有的 PAH 聚合物。这些数据共同展示了为聚电解质包裹的 NPs 选择适当的后合成纯化方法的重要性,并表明明显的毒性结果可能是由于未预期的游离包裹剂(如聚电解质)所致。

相似文献

2
Analytical strategy for studying the formation and stability of multilayered films containing gold nanoparticles.
Anal Bioanal Chem. 2021 Feb;413(5):1473-1483. doi: 10.1007/s00216-020-03113-6. Epub 2021 Jan 26.
3
Electric Potential of Citrate-Capped Gold Nanoparticles Is Affected by Poly(allylamine hydrochloride) and Salt Concentration.
ACS Appl Mater Interfaces. 2022 Mar 16;14(10):12538-12550. doi: 10.1021/acsami.1c24526. Epub 2022 Mar 1.
4
CPMV-polyelectrolyte-templated gold nanoparticles.
Biomacromolecules. 2011 Jul 11;12(7):2723-8. doi: 10.1021/bm200499v. Epub 2011 Jun 17.
5
Surface engineering of gold nanoparticles for in vitro siRNA delivery.
Nanoscale. 2012 Aug 21;4(16):5102-9. doi: 10.1039/c2nr31290e. Epub 2012 Jul 10.
6
Characterization, purification, and stability of gold nanoparticles.
Biomaterials. 2010 Dec;31(34):9023-30. doi: 10.1016/j.biomaterials.2010.08.012.
7
Nanoparticle syntheses using non-porous and porous polyelectrolyte multilayers for biological applications.
J Nanosci Nanotechnol. 2010 Oct;10(10):6892-5. doi: 10.1166/jnn.2010.2982.
10
Colloidal stability of iron oxide nanoparticles with multivalent polymer surfactants.
J Colloid Interface Sci. 2015 Apr 1;443:8-12. doi: 10.1016/j.jcis.2014.11.068. Epub 2014 Dec 4.

引用本文的文献

1
Emergence of Polymer-Networked Nanoparticle Structures as Primitive Neuromorphic Computing States.
J Phys Chem A. 2025 Sep 11;129(36):8432-8440. doi: 10.1021/acs.jpca.5c02941. Epub 2025 Aug 30.
2
Structure and Zeta Potential of Gold Nanoparticles with Coronas of Varying Size and Composition.
J Phys Chem C Nanomater Interfaces. 2025 Feb 18;129(8):4204-4214. doi: 10.1021/acs.jpcc.4c07595. eCollection 2025 Feb 27.
3
Nanoparticles Interfere with Chemotaxis: An Example of Nanoparticles as Molecular "Knockouts" at the Cellular Level.
ACS Nano. 2021 May 25;15(5):8813-8825. doi: 10.1021/acsnano.1c01262. Epub 2021 Apr 22.
4
Gold nanoparticles disrupt actin organization and pulmonary endothelial barriers.
Sci Rep. 2020 Aug 7;10(1):13320. doi: 10.1038/s41598-020-70148-1.

本文引用的文献

1
Layer-by-layer assembly for biomedical applications in the last decade.
Nanotechnology. 2015 Oct 23;26(42):422001. doi: 10.1088/0957-4484/26/42/422001. Epub 2015 Sep 30.
2
The Impact of Surface Ligands and Synthesis Method on the Toxicity of Glutathione-Coated Gold Nanoparticles.
Nanomaterials (Basel). 2014 Jun 1;4(2):355-371. doi: 10.3390/nano4020355.
4
Multilayer assembly. Technology-driven layer-by-layer assembly of nanofilms.
Science. 2015 Apr 24;348(6233):aaa2491. doi: 10.1126/science.aaa2491.
6
Surface-Enhanced Raman Spectroscopy of Polyelectrolyte-Wrapped Gold Nanoparticles in Colloidal Suspension.
J Phys Chem C Nanomater Interfaces. 2013 May 23;117(20). doi: 10.1021/jp402392y.
8
Purification implications on SERS activity of silica coated gold nanospheres.
Anal Chem. 2012 Sep 18;84(18):7906-11. doi: 10.1021/ac3016517. Epub 2012 Sep 6.
9
Bacterial sunscreen: layer-by-layer deposition of UV-absorbing polymers on whole-cell biosensors.
Langmuir. 2012 Jul 17;28(28):10521-7. doi: 10.1021/la3014514. Epub 2012 Jul 2.
10
Nanoparticle-based strategies for detection and remediation of environmental pollutants.
Analyst. 2011 Mar 7;136(5):872-7. doi: 10.1039/c0an00905a. Epub 2011 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验