Suppr超能文献

Cullin蛋白的NEDDylation修饰可能通过变构调节多聚泛素链的长度和拓扑结构。

Cullin neddylation may allosterically tune polyubiquitin chain length and topology.

作者信息

Onel Melis, Sumbul Fidan, Liu Jin, Nussinov Ruth, Haliloglu Turkan

机构信息

Polymer Research Center and Chemical Engineering Department, Bogazici University, Istanbul, Turkey.

Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, U.S.A.

出版信息

Biochem J. 2017 Feb 20;474(5):781-795. doi: 10.1042/BCJ20160748.

Abstract

Conjugation of Nedd8 (neddylation) to Cullins (Cul) in Cul-RING E3 ligases (CRLs) stimulates ubiquitination and polyubiquitination of protein substrates. CRL is made up of two Cul-flanked arms: one consists of the substrate-binding and adaptor proteins and the other consists of E2 and Ring-box protein (Rbx). Polyubiquitin chain length and topology determine the substrate fate. Here, we ask how polyubiquitin chains are accommodated in the limited space available between the two arms and what determines the polyubiquitin linkage topology. We focus on Cul5 and Rbx1 in three states: before Cul5 neddylation (closed state), after neddylation (open state), and after deneddylation, exploiting molecular dynamics simulations and the Gaussian Network Model. We observe that regulation of substrate ubiquitination and polyubiquitination takes place through Rbx1 rotations, which are controlled by Nedd8-Rbx1 allosteric communication. Allosteric propagation proceeds from Nedd8 via Cul5 dynamic hinges and hydrogen bonds between the C-terminal domain of Cul5 (Cul5) and Rbx1 (Cul5 residues R538/R569 and Rbx1 residue E67, or Cul5 E474/E478/N491 and Rbx1 K105). Importantly, at each ubiquitination step (homogeneous or heterogeneous, linear or branched), the polyubiquitin linkages fit into the distances between the two arms, and these match the inherent CRL conformational tendencies. Hinge sites may constitute drug targets.

摘要

在Cul-RING E3连接酶(CRL)中,Nedd8与Cullins(Cul)的缀合(Neddylation)刺激蛋白质底物的泛素化和多聚泛素化。CRL由两个以Cul为侧翼的臂组成:一个由底物结合蛋白和衔接蛋白组成,另一个由E2和环框蛋白(Rbx)组成。多聚泛素链的长度和拓扑结构决定底物的命运。在这里,我们研究多聚泛素链如何在两个臂之间有限的空间中容纳,以及是什么决定了多聚泛素连接的拓扑结构。我们利用分子动力学模拟和高斯网络模型,聚焦于处于三种状态的Cul5和Rbx1:Cul5进行Neddylation修饰之前(闭合状态)、修饰之后(开放状态)以及去Neddylation修饰之后。我们观察到底物泛素化和多聚泛素化的调节是通过Rbx1的旋转进行的,而Rbx1的旋转由Nedd8-Rbx1变构通讯控制。变构传播从Nedd8经由Cul5动态铰链以及Cul5(Cul5)的C末端结构域与Rbx1(Cul5的R538/R569残基和Rbx1的E67残基,或Cul5的E474/E478/N491残基和Rbx1的K105残基)之间的氢键进行。重要的是,在每个泛素化步骤(均一或不均一、线性或分支)中,多聚泛素连接适合于两个臂之间的距离,并且这些距离与CRL固有的构象倾向相匹配。铰链位点可能构成药物靶点。

相似文献

1
Cullin neddylation may allosterically tune polyubiquitin chain length and topology.
Biochem J. 2017 Feb 20;474(5):781-795. doi: 10.1042/BCJ20160748.
4
Neddylation-induced conformational control regulates cullin RING ligase activity in vivo.
J Mol Biol. 2011 Jun 3;409(2):136-45. doi: 10.1016/j.jmb.2011.03.023. Epub 2011 Apr 2.
5
Flexible cullins in cullin-RING E3 ligases allosterically regulate ubiquitination.
J Biol Chem. 2011 Nov 25;286(47):40934-42. doi: 10.1074/jbc.M111.277236. Epub 2011 Sep 20.
6
Structural basis for Cullins and RING component inhibition: Targeting E3 ubiquitin pathway conductors for cancer therapeutics.
Int J Biol Macromol. 2018 Jan;106:532-543. doi: 10.1016/j.ijbiomac.2017.08.047. Epub 2017 Aug 10.
7
NEDD8 Deamidation Inhibits Cullin RING Ligase Dynamics.
Front Immunol. 2021 Aug 17;12:695331. doi: 10.3389/fimmu.2021.695331. eCollection 2021.
8
Regulation of cullin-RING E3 ubiquitin-ligases by neddylation and dimerization.
Cell Mol Life Sci. 2009 Jun;66(11-12):1924-38. doi: 10.1007/s00018-009-8712-7.
9
Gossypol inhibits cullin neddylation by targeting SAG-CUL5 and RBX1-CUL1 complexes.
Neoplasia. 2020 Apr;22(4):179-191. doi: 10.1016/j.neo.2020.02.003.
10
The Mechanism of NEDD8 Activation of CUL5 Ubiquitin E3 Ligases.
Mol Cell Proteomics. 2021;20:100019. doi: 10.1074/mcp.RA120.002414. Epub 2021 Jan 6.

引用本文的文献

1
Pioneer in Molecular Biology: Conformational Ensembles in Molecular Recognition, Allostery, and Cell Function.
J Mol Biol. 2025 Jun 1;437(11):169044. doi: 10.1016/j.jmb.2025.169044. Epub 2025 Feb 25.
2
Development of a BCL-xL and BCL-2 dual degrader with improved anti-leukemic activity.
Nat Commun. 2021 Nov 25;12(1):6896. doi: 10.1038/s41467-021-27210-x.
5
Structural Model for Recruitment of RIT1 to the LZTR1 E3 Ligase: Evidences from an Integrated Computational Approach.
J Chem Inf Model. 2021 Apr 26;61(4):1875-1888. doi: 10.1021/acs.jcim.1c00296. Epub 2021 Apr 1.
6
Does Ras Activate Raf and PI3K Allosterically?
Front Oncol. 2019 Nov 15;9:1231. doi: 10.3389/fonc.2019.01231. eCollection 2019.
8
Crystal Structure of the Cul2-Rbx1-EloBC-VHL Ubiquitin Ligase Complex.
Structure. 2017 Jun 6;25(6):901-911.e3. doi: 10.1016/j.str.2017.04.009.

本文引用的文献

1
Two Distinct Types of E3 Ligases Work in Unison to Regulate Substrate Ubiquitylation.
Cell. 2016 Aug 25;166(5):1198-1214.e24. doi: 10.1016/j.cell.2016.07.027.
2
Structural insights into the catalysis and regulation of E3 ubiquitin ligases.
Nat Rev Mol Cell Biol. 2016 Oct;17(10):626-42. doi: 10.1038/nrm.2016.91. Epub 2016 Aug 3.
4
Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C.
Cell. 2016 Jun 2;165(6):1440-1453. doi: 10.1016/j.cell.2016.05.037.
6
The Role of Protein Loops and Linkers in Conformational Dynamics and Allostery.
Chem Rev. 2016 Jun 8;116(11):6391-423. doi: 10.1021/acs.chemrev.5b00623. Epub 2016 Feb 18.
7
Targeting cullin-RING ligases for cancer treatment: rationales, advances and therapeutic implications.
Cytotechnology. 2016 Jan;68(1):1-8. doi: 10.1007/s10616-015-9870-0. Epub 2015 Apr 23.
9
Protein neddylation: beyond cullin-RING ligases.
Nat Rev Mol Cell Biol. 2015 Jan;16(1):30-44. doi: 10.1038/nrm3919.
10
Principles of allosteric interactions in cell signaling.
J Am Chem Soc. 2014 Dec 24;136(51):17692-701. doi: 10.1021/ja510028c. Epub 2014 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验