Suppr超能文献

伊曲康唑同时靶向NPC1和VDAC1可导致对mTOR信号传导和血管生成的协同抑制。

Simultaneous Targeting of NPC1 and VDAC1 by Itraconazole Leads to Synergistic Inhibition of mTOR Signaling and Angiogenesis.

作者信息

Head Sarah A, Shi Wei Q, Yang Eun Ju, Nacev Benjamin A, Hong Sam Y, Pasunooti Kalyan K, Li Ruo-Jing, Shim Joong Sup, Liu Jun O

机构信息

Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine , Baltimore, Maryland 21205, United States.

SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins School of Medicine , Baltimore, Maryland 21205, United States.

出版信息

ACS Chem Biol. 2017 Jan 20;12(1):174-182. doi: 10.1021/acschembio.6b00849. Epub 2016 Dec 2.

Abstract

The antifungal drug itraconazole was recently found to exhibit potent antiangiogenic activity and has since been repurposed as an investigational anticancer agent. Itraconazole has been shown to exert its antiangiogenic activity through inhibition of the mTOR signaling pathway, but the molecular mechanism of action was unknown. We recently identified the mitochondrial protein VDAC1 as a target of itraconazole and a mediator of its activation of AMPK, an upstream regulator of mTOR. However, VDAC1 could not account for the previously reported inhibition of cholesterol trafficking by itraconazole, which was also demonstrated to lead to mTOR inhibition. In this study, we demonstrate that cholesterol trafficking inhibition by itraconazole is due to direct inhibition of the lysosomal protein NPC1. We further map the binding site of itraconazole to the sterol-sensing domain of NPC1 using mutagenesis, competition with U18666A, and molecular docking. Finally, we demonstrate that simultaneous AMPK activation and cholesterol trafficking inhibition leads to synergistic inhibition of mTOR, endothelial cell proliferation, and angiogenesis.

摘要

抗真菌药物伊曲康唑最近被发现具有强大的抗血管生成活性,此后已被重新用作一种研究性抗癌药物。伊曲康唑已被证明通过抑制mTOR信号通路发挥其抗血管生成活性,但其分子作用机制尚不清楚。我们最近确定线粒体蛋白VDAC1是伊曲康唑的靶点,也是其激活mTOR上游调节因子AMPK的介质。然而,VDAC1无法解释伊曲康唑先前报道的对胆固醇转运的抑制作用,这种抑制作用也被证明会导致mTOR抑制。在本研究中,我们证明伊曲康唑对胆固醇转运的抑制是由于直接抑制溶酶体蛋白NPC1。我们进一步通过诱变、与U18666A竞争和分子对接,将伊曲康唑的结合位点定位到NPC1的固醇感应结构域。最后,我们证明同时激活AMPK和抑制胆固醇转运可导致对mTOR、内皮细胞增殖和血管生成的协同抑制。

相似文献

1
Simultaneous Targeting of NPC1 and VDAC1 by Itraconazole Leads to Synergistic Inhibition of mTOR Signaling and Angiogenesis.
ACS Chem Biol. 2017 Jan 20;12(1):174-182. doi: 10.1021/acschembio.6b00849. Epub 2016 Dec 2.
2
Antifungal drug itraconazole targets VDAC1 to modulate the AMPK/mTOR signaling axis in endothelial cells.
Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):E7276-85. doi: 10.1073/pnas.1512867112. Epub 2015 Dec 10.
3
Cholesterol trafficking is required for mTOR activation in endothelial cells.
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4764-9. doi: 10.1073/pnas.0910872107. Epub 2010 Feb 22.
4
Astemizole Inhibits mTOR Signaling and Angiogenesis by Blocking Cholesterol Trafficking.
Int J Biol Sci. 2018 Jun 23;14(10):1175-1185. doi: 10.7150/ijbs.26011. eCollection 2018.
5
Triazoles inhibit cholesterol export from lysosomes by binding to NPC1.
Proc Natl Acad Sci U S A. 2017 Jan 3;114(1):89-94. doi: 10.1073/pnas.1619571114. Epub 2016 Dec 19.
6
Antidepressant drug sertraline modulates AMPK-MTOR signaling-mediated autophagy via targeting mitochondrial VDAC1 protein.
Autophagy. 2021 Oct;17(10):2783-2799. doi: 10.1080/15548627.2020.1841953. Epub 2020 Nov 9.
8
Alisol B regulates AMPK/mTOR/SREBPs via directly targeting VDAC1 to alleviate hyperlipidemia.
Phytomedicine. 2024 Jun;128:155313. doi: 10.1016/j.phymed.2023.155313. Epub 2023 Dec 25.
9
Itraconazole inhibits HMEC-1 angiogenesis.
Biomed Pharmacother. 2012 Jun;66(4):312-7. doi: 10.1016/j.biopha.2011.11.004. Epub 2011 Dec 21.
10
Akt activation increases cellular cholesterol by promoting the proteasomal degradation of Niemann-Pick C1.
Biochem J. 2015 Oct 15;471(2):243-53. doi: 10.1042/BJ20150602. Epub 2015 Aug 17.

引用本文的文献

1
Research progress on cholesterol metabolism and tumor therapy.
Discov Oncol. 2025 Apr 30;16(1):647. doi: 10.1007/s12672-025-02430-5.
4
Cholesterol metabolism in tumor microenvironment: cancer hallmarks and therapeutic opportunities.
Int J Biol Sci. 2024 Mar 17;20(6):2044-2071. doi: 10.7150/ijbs.92274. eCollection 2024.
7
Repurposing Itraconazole and Hydroxychloroquine to Target Lysosomal Homeostasis in Epithelial Ovarian Cancer.
Cancer Res Commun. 2022 May 4;2(5):293-306. doi: 10.1158/2767-9764.CRC-22-0037. eCollection 2022 May.
9
Repurposing antifungal drugs for cancer therapy.
J Adv Res. 2023 Jun;48:259-273. doi: 10.1016/j.jare.2022.08.018. Epub 2022 Sep 5.
10
High-affinity SOAT1 ligands remodeled cholesterol metabolism program to inhibit tumor growth.
BMC Med. 2022 Aug 9;20(1):292. doi: 10.1186/s12916-022-02436-8.

本文引用的文献

1
Structure of human Niemann-Pick C1 protein.
Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):8212-7. doi: 10.1073/pnas.1607795113. Epub 2016 Jun 15.
2
Structural Insights into the Niemann-Pick C1 (NPC1)-Mediated Cholesterol Transfer and Ebola Infection.
Cell. 2016 Jun 2;165(6):1467-1478. doi: 10.1016/j.cell.2016.05.022. Epub 2016 May 26.
3
Antifungal drug itraconazole targets VDAC1 to modulate the AMPK/mTOR signaling axis in endothelial cells.
Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):E7276-85. doi: 10.1073/pnas.1512867112. Epub 2015 Dec 10.
5
Itraconazole inhibits enterovirus replication by targeting the oxysterol-binding protein.
Cell Rep. 2015 Feb 3;10(4):600-15. doi: 10.1016/j.celrep.2014.12.054. Epub 2015 Jan 29.
6
ATP/ADP ratio, the missed connection between mitochondria and the Warburg effect.
Mitochondrion. 2014 Nov;19 Pt A:78-84. doi: 10.1016/j.mito.2014.09.002. Epub 2014 Sep 16.
8
Open-label, exploratory phase II trial of oral itraconazole for the treatment of basal cell carcinoma.
J Clin Oncol. 2014 Mar 10;32(8):745-51. doi: 10.1200/JCO.2013.49.9525. Epub 2014 Feb 3.
9
Target Identification by Diazirine Photo-Cross-linking and Click Chemistry.
Curr Protoc Chem Biol. 2009 Dec;1:55-73. doi: 10.1002/9780470559277.ch090167.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验