Suppr超能文献

检测抑郁症的神经影像学生物标志物:多变量模式识别研究的荟萃分析。

Detecting Neuroimaging Biomarkers for Depression: A Meta-analysis of Multivariate Pattern Recognition Studies.

机构信息

Department of Psychiatry, Ludwig-Maximilians University Munich, Munich.

Department of Psychiatry, Ludwig-Maximilians University Munich, Munich.

出版信息

Biol Psychiatry. 2017 Sep 1;82(5):330-338. doi: 10.1016/j.biopsych.2016.10.028. Epub 2016 Nov 9.

Abstract

BACKGROUND

Multiple studies have examined functional and structural brain alteration in patients diagnosed with major depressive disorder (MDD). The introduction of multivariate statistical methods allows investigators to utilize data concerning these brain alterations to generate diagnostic models that accurately differentiate patients with MDD from healthy control subjects (HCs). However, there is substantial heterogeneity in the reported results, the methodological approaches, and the clinical characteristics of participants in these studies.

METHODS

We conducted a meta-analysis of all studies using neuroimaging (volumetric measures derived from T1-weighted images, task-based functional magnetic resonance imaging [MRI], resting-state MRI, or diffusion tensor imaging) in combination with multivariate statistical methods to differentiate patients diagnosed with MDD from HCs.

RESULTS

Thirty-three (k = 33) samples including 912 patients with MDD and 894 HCs were included in the meta-analysis. Across all studies, patients with MDD were separated from HCs with 77% sensitivity and 78% specificity. Classification based on resting-state MRI (85% sensitivity, 83% specificity) and on diffusion tensor imaging data (88% sensitivity, 92% specificity) outperformed classifications based on structural MRI (70% sensitivity, 71% specificity) and task-based functional MRI (74% sensitivity, 77% specificity).

CONCLUSIONS

Our results demonstrate the high representational capacity of multivariate statistical methods to identify neuroimaging-based biomarkers of depression. Future studies are needed to elucidate whether multivariate neuroimaging analysis has the potential to generate clinically useful tools for the differential diagnosis of affective disorders and the prediction of both treatment response and functional outcome.

摘要

背景

多项研究已经检查了被诊断患有重度抑郁症(MDD)的患者的大脑功能和结构变化。多元统计方法的引入使研究人员能够利用有关这些大脑改变的数据来生成能够准确地区分 MDD 患者与健康对照(HC)的诊断模型。然而,这些研究报告的结果、方法学方法以及参与者的临床特征存在很大的异质性。

方法

我们对所有使用神经影像学(来自 T1 加权图像的容积测量值、基于任务的功能磁共振成像[MRI]、静息状态 MRI 或扩散张量成像)与多元统计方法相结合以区分 MDD 患者与 HCs 的研究进行了荟萃分析。

结果

荟萃分析共纳入 33 项研究(k = 33),共纳入 912 例 MDD 患者和 894 例 HCs。在所有研究中,MDD 患者的敏感性为 77%,特异性为 78%,可与 HCs 区分开来。基于静息状态 MRI 的分类(85%敏感性,83%特异性)和基于扩散张量成像数据的分类(88%敏感性,92%特异性)优于基于结构 MRI(70%敏感性,71%特异性)和基于任务的功能 MRI(74%敏感性,77%特异性)的分类。

结论

我们的结果表明,多元统计方法具有很高的代表性,可以识别基于神经影像学的抑郁生物标志物。需要进一步的研究来阐明多元神经影像学分析是否有可能生成用于情感障碍的鉴别诊断以及治疗反应和功能结果预测的临床有用工具。

相似文献

1
Detecting Neuroimaging Biomarkers for Depression: A Meta-analysis of Multivariate Pattern Recognition Studies.
Biol Psychiatry. 2017 Sep 1;82(5):330-338. doi: 10.1016/j.biopsych.2016.10.028. Epub 2016 Nov 9.
2
Quantifying Deviations of Brain Structure and Function in Major Depressive Disorder Across Neuroimaging Modalities.
JAMA Psychiatry. 2022 Sep 1;79(9):879-888. doi: 10.1001/jamapsychiatry.2022.1780.
3
Diagnosis of Major Depressive Disorder Based on Individualized Brain Functional and Structural Connectivity.
J Magn Reson Imaging. 2025 Apr;61(4):1712-1725. doi: 10.1002/jmri.29617. Epub 2024 Sep 25.
4
Diagnosis of Major Depressive Disorder Using Machine Learning Based on Multisequence MRI Neuroimaging Features.
J Magn Reson Imaging. 2023 Nov;58(5):1420-1430. doi: 10.1002/jmri.28650. Epub 2023 Feb 16.
6
Multi-modal MRI for objective diagnosis and outcome prediction in depression.
Neuroimage Clin. 2024;44:103682. doi: 10.1016/j.nicl.2024.103682. Epub 2024 Oct 10.
7
Co-alteration Network Architecture of Major Depressive Disorder: A Multi-modal Neuroimaging Assessment of Large-scale Disease Effects.
Neuroinformatics. 2023 Apr;21(2):443-455. doi: 10.1007/s12021-022-09614-2. Epub 2022 Dec 5.
9
Development and evaluation of a multimodal marker of major depressive disorder.
Hum Brain Mapp. 2018 Nov;39(11):4420-4439. doi: 10.1002/hbm.24282. Epub 2018 Aug 16.
10
Predicting treatment outcomes in major depressive disorder using brain magnetic resonance imaging: a meta-analysis.
Mol Psychiatry. 2025 Mar;30(3):825-837. doi: 10.1038/s41380-024-02710-6. Epub 2024 Aug 26.

引用本文的文献

4
Eye Movement Indicator Difference Based on Binocular Color Fusion and Rivalry.
J Eye Mov Res. 2025 Apr 5;18(2):10. doi: 10.3390/jemr18020010. eCollection 2025 Apr.
6
7
Stable multivariate lesion symptom mapping.
Apert Neuro. 2024;4. doi: 10.52294/001c.117311. Epub 2024 Jun 7.
8
Magnetic resonance imaging-based machine learning classification of schizophrenia spectrum disorders: a meta-analysis.
Psychiatry Clin Neurosci. 2024 Dec;78(12):732-743. doi: 10.1111/pcn.13736. Epub 2024 Sep 18.

本文引用的文献

2
Differential association of default mode network connectivity and rumination in healthy individuals and remitted MDD patients.
Soc Cogn Affect Neurosci. 2016 Nov;11(11):1792-1801. doi: 10.1093/scan/nsw085. Epub 2016 Jul 12.
3
Detecting Neuroimaging Biomarkers for Psychiatric Disorders: Sample Size Matters.
Front Psychiatry. 2016 Mar 31;7:50. doi: 10.3389/fpsyt.2016.00050. eCollection 2016.
4
Discriminating Bipolar Disorder From Major Depression Based on SVM-FoBa: Efficient Feature Selection With Multimodal Brain Imaging Data.
IEEE Trans Auton Ment Dev. 2015 Dec;7(4):320-331. doi: 10.1109/TAMD.2015.2440298. Epub 2015 Oct 26.
6
Abnormal brain activation during directed forgetting of negative memory in depressed patients.
J Affect Disord. 2016 Jan 15;190:880-888. doi: 10.1016/j.jad.2015.05.034.
8
Random Forest Classification of Depression Status Based On Subcortical Brain Morphometry Following Electroconvulsive Therapy.
Proc IEEE Int Symp Biomed Imaging. 2015 Apr;2015:92-96. doi: 10.1109/ISBI.2015.7163824.
10
From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics.
Neurosci Biobehav Rev. 2015 Oct;57:328-49. doi: 10.1016/j.neubiorev.2015.08.001. Epub 2015 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验