Ikeshoji Tamio, Otani Minoru
Fuel Cell Cutting-Edge Research Center Technology Research Association (FC-Cubic), AIST Tokyo Waterfront Main Building, 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan.
Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba 305-8568, Japan.
Phys Chem Chem Phys. 2017 Feb 8;19(6):4447-4453. doi: 10.1039/c6cp08466d.
Present fuel cells must increase the activity of the oxygen reduction reaction (ORR) on platinum (or Pt alloy) electrodes. Detailed simulation analyses can direct future investigations by providing a better understanding of the ORR. We adopted a density functional theory (DFT)-based, first-principles molecular dynamics simulation for the elementary steps of the electrochemical ORR on Pt(111). The two-step process involves successive protonation of O and OH, which are adsorbed on Pt. The relevant redox potentials were estimated by changing the coverage of OH(ad) and O(ad). The reaction energy profiles were determined along the reaction coordinate using the Blue-Moon ensemble method and a constant-bias scheme in the DFT calculations. These profiles at different biases were then used to generate activation energies and symmetry factors. Cyclic voltammetry (CV) and linear sweep voltammetry profiles were then calculated from the Butler-Volmer rate, Nernst equilibrium, and mass diffusion equations using these obtained parameters, literature values and appropriate prefactors in the rate equations. The experimentally observed reversible and irreversible peaks in CV were obtained. The irreversibility of the protonation of O(ad), , attributed to its higher activation energy, affects the ORR potential and thus fuel cell performance. It is therefore necessary not only to tune the adsorption energy of the O(ad) and OH(ad) intermediates, which are the origin of the "volcano plot", but also to tune 's activation energy to elevate the performance above that of the volcano-top.
目前的燃料电池必须提高铂(或铂合金)电极上氧还原反应(ORR)的活性。详细的模拟分析可以通过更好地理解ORR来指导未来的研究。我们采用基于密度泛函理论(DFT)的第一性原理分子动力学模拟来研究Pt(111)上电化学ORR的基本步骤。两步过程涉及吸附在Pt上的O和OH的连续质子化。通过改变OH(ad)和O(ad)的覆盖度来估计相关的氧化还原电位。在DFT计算中,使用蓝月系综方法和恒偏置方案沿着反应坐标确定反应能量分布。然后利用这些不同偏置下的分布来生成活化能和对称因子。接着,使用这些获得的参数、文献值以及速率方程中的适当前置因子,根据巴特勒 - 伏尔默速率、能斯特平衡和质量扩散方程计算循环伏安法(CV)和线性扫描伏安法曲线。得到了实验观察到的CV中的可逆和不可逆峰。O(ad)质子化的不可逆性,归因于其较高的活化能,影响ORR电位,从而影响燃料电池性能。因此,不仅需要调整作为“火山图”起源的O(ad)和OH(ad)中间体的吸附能,还需要调整的活化能,以将性能提升到高于火山顶的水平。