Suppr超能文献

用于改进3T磁共振图像分割的7T引导学习框架

7T-Guided Learning Framework for Improving the Segmentation of 3T MR Images.

作者信息

Bahrami Khosro, Rekik Islem, Shi Feng, Gao Yaozong, Shen Dinggang

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

出版信息

Med Image Comput Comput Assist Interv. 2016 Oct;9901:572-580. doi: 10.1007/978-3-319-46723-8_66. Epub 2016 Oct 2.

Abstract

The emerging era of ultra-high-field MRI using 7T MRI scanners dramatically improved sensitivity, image resolution, and tissue contrast when compared to 3T MRI scanners in examining various anatomical structures. The advantages of these high-resolution MR images include higher segmentation accuracy of MRI brain tissues. However, currently, accessibility to 7T MRI scanners remains much more limited than 3T MRI scanners due to technological and economical constraints. Hence, we propose in this work the first learning-based model that improves the segmentation of an input 3T MR image with any conventional segmentation method, through the reconstruction of a higher-quality 7T-like MR image, without actually acquiring an ultra-high-field 7T MRI. Our proposed framework comprises two main steps. First, we estimate a non-linear mapping from 3T MRI to 7T MRI space, using random forest regression model with novel weighting and ensembling schemes, to reconstruct initial 7T-like MR images. Second, we use a group sparse representation with a new pre-selection approach to further refine the 7T-like MR image reconstruction. We evaluated our 7T MRI reconstruction results along with their segmentation results using 13 subjects acquired with both 3T and 7T MR images. For tissue segmentation, we applied two widely used segmentation methods (FAST and SPM) to perform the experiments. Our results showed (1) the improvement of WM, GM and CSF brain tissues segmentation results when guided by reconstructed 7T-like images compared to 3T MR images, and (2) the outperformance of the proposed 7T MRI reconstruction method when compared to other state-of-the-art methods.

摘要

与3T磁共振成像(MRI)扫描仪相比,使用7T MRI扫描仪的超高场MRI新时代在检查各种解剖结构时显著提高了灵敏度、图像分辨率和组织对比度。这些高分辨率MR图像的优势包括对MRI脑组织的更高分割精度。然而,目前由于技术和经济限制,7T MRI扫描仪的可及性仍比3T MRI扫描仪有限得多。因此,在这项工作中,我们提出了首个基于学习的模型,该模型通过重建更高质量的类似7T的MR图像,利用任何传统分割方法改进输入3T MR图像的分割,而无需实际获取超高场7T MRI。我们提出的框架包括两个主要步骤。首先,我们使用具有新颖加权和集成方案的随机森林回归模型估计从3T MRI到7T MRI空间的非线性映射,以重建初始的类似7T的MR图像。其次,我们使用具有新预选择方法的组稀疏表示来进一步细化类似7T的MR图像重建。我们使用13名同时获取了3T和7T MR图像的受试者评估了我们的7T MRI重建结果及其分割结果。对于组织分割,我们应用了两种广泛使用的分割方法(FAST和SPM)来进行实验。我们的结果表明:(1)与3T MR图像相比,在重建的类似7T的图像引导下,白质、灰质和脑脊液脑组织的分割结果得到了改善;(2)与其他现有最先进方法相比,所提出的7T MRI重建方法表现更优。

相似文献

1
7T-Guided Learning Framework for Improving the Segmentation of 3T MR Images.
Med Image Comput Comput Assist Interv. 2016 Oct;9901:572-580. doi: 10.1007/978-3-319-46723-8_66. Epub 2016 Oct 2.
2
Reconstruction of 7T-Like Images From 3T MRI.
IEEE Trans Med Imaging. 2016 Sep;35(9):2085-97. doi: 10.1109/TMI.2016.2549918. Epub 2016 Apr 1.
3
7T-guided super-resolution of 3T MRI.
Med Phys. 2017 May;44(5):1661-1677. doi: 10.1002/mp.12132. Epub 2017 Apr 22.
4
Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
Med Phys. 2016 Dec;43(12):6588-6597. doi: 10.1118/1.4967487.
5
Joint Reconstruction and Segmentation of 7T-like MR Images from 3T MRI Based on Cascaded Convolutional Neural Networks.
Med Image Comput Comput Assist Interv. 2017 Sep;10433:764-772. doi: 10.1007/978-3-319-66182-7_87. Epub 2017 Sep 4.
6
Hierarchical Reconstruction of 7T-like Images from 3T MRI Using Multi-level CCA and Group Sparsity.
Med Image Comput Comput Assist Interv. 2015 Oct;9350:659-666. doi: 10.1007/978-3-319-24571-3_79. Epub 2015 Nov 20.
7
Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
Med Phys. 2016 Dec;43(12):6588. doi: 10.1118/1.4967487.
8
Learning-Based 3T Brain MRI Segmentation with Guidance from 7T MRI Labeling.
Mach Learn Med Imaging. 2016 Oct;10019:213-220. doi: 10.1007/978-3-319-47157-0_26. Epub 2016 Oct 1.
9
The Learning-based Automatic Segmentation Algorithm of Brain MR Images Based on 7T.
Curr Med Imaging. 2021;17(3):342-351. doi: 10.2174/1573405616666200806171509.
10
T2-weighted turbo spin-echo magnetic resonance imaging of canine brain anatomy at 1.5T, 3T, and 7T field strengths.
Anat Rec (Hoboken). 2022 Jan;305(1):222-233. doi: 10.1002/ar.24724. Epub 2021 Aug 19.

本文引用的文献

1
Hierarchical Reconstruction of 7T-like Images from 3T MRI Using Multi-level CCA and Group Sparsity.
Med Image Comput Comput Assist Interv. 2015 Oct;9350:659-666. doi: 10.1007/978-3-319-24571-3_79. Epub 2015 Nov 20.
2
Image quality transfer via random forest regression: applications in diffusion MRI.
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):225-32. doi: 10.1007/978-3-319-10443-0_29.
3
Magnetic Resonance Image Example-Based Contrast Synthesis.
IEEE Trans Med Imaging. 2013 Dec;32(12):2348-63. doi: 10.1109/TMI.2013.2282126. Epub 2013 Sep 16.
4
Clinical applications of 7 T MRI in the brain.
Eur J Radiol. 2013 May;82(5):708-18. doi: 10.1016/j.ejrad.2011.07.007. Epub 2011 Sep 19.
5
Clinical fMRI: evidence for a 7T benefit over 3T.
Neuroimage. 2011 Aug 1;57(3):1015-21. doi: 10.1016/j.neuroimage.2011.05.010. Epub 2011 May 17.
6
Image super-resolution via sparse representation.
IEEE Trans Image Process. 2010 Nov;19(11):2861-73. doi: 10.1109/TIP.2010.2050625. Epub 2010 May 18.
7
Unified segmentation.
Neuroimage. 2005 Jul 1;26(3):839-51. doi: 10.1016/j.neuroimage.2005.02.018. Epub 2005 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验