Suppr超能文献

枯草芽孢杆菌SMC复合物在从染色体起点移动到终点的过程中使染色体臂并列。

Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus.

作者信息

Wang Xindan, Brandão Hugo B, Le Tung B K, Laub Michael T, Rudner David Z

机构信息

Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.

Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA.

出版信息

Science. 2017 Feb 3;355(6324):524-527. doi: 10.1126/science.aai8982.

Abstract

Structural maintenance of chromosomes (SMC) complexes play critical roles in chromosome dynamics in virtually all organisms, but how they function remains poorly understood. In the bacterium Bacillus subtilis, SMC-condensin complexes are topologically loaded at centromeric sites adjacent to the replication origin. Here we provide evidence that these ring-shaped assemblies tether the left and right chromosome arms together while traveling from the origin to the terminus (>2 megabases) at rates >50 kilobases per minute. Condensin movement scales linearly with time, providing evidence for an active transport mechanism. These data support a model in which SMC complexes function by processively enlarging DNA loops. Loop formation followed by processive enlargement provides a mechanism by which condensin complexes compact and resolve sister chromatids in mitosis and by which cohesin generates topologically associating domains during interphase.

摘要

染色体结构维持(SMC)复合物在几乎所有生物体的染色体动态变化中都起着关键作用,但其作用机制仍知之甚少。在枯草芽孢杆菌中,SMC-凝聚素复合物在与复制起点相邻的着丝粒位点进行拓扑加载。在此,我们提供证据表明,这些环状组装体在以每分钟超过50千碱基的速度从起点向终点(超过2兆碱基)移动时,将左右染色体臂拴在一起。凝聚素的移动与时间呈线性关系,这为一种主动运输机制提供了证据。这些数据支持了一个模型,即SMC复合物通过逐步扩大DNA环来发挥作用。环的形成随后进行逐步扩大,提供了一种机制,通过该机制凝聚素复合物在有丝分裂中压缩并分离姐妹染色单体,以及黏连蛋白在间期产生拓扑相关结构域。

相似文献

1
Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus.
Science. 2017 Feb 3;355(6324):524-527. doi: 10.1126/science.aai8982.
2
Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis.
Genes Dev. 2015 Aug 1;29(15):1661-75. doi: 10.1101/gad.265876.115.
4
The SMC condensin complex is required for origin segregation in Bacillus subtilis.
Curr Biol. 2014 Feb 3;24(3):287-92. doi: 10.1016/j.cub.2013.11.050. Epub 2014 Jan 16.
6
Tuned SMC Arms Drive Chromosomal Loading of Prokaryotic Condensin.
Mol Cell. 2017 Mar 2;65(5):861-872.e9. doi: 10.1016/j.molcel.2017.01.026. Epub 2017 Feb 23.
7
Closing the ring: a new twist to bacterial chromosome condensation.
Cell. 2009 May 15;137(4):598-600. doi: 10.1016/j.cell.2009.04.055.
8
Interlinked sister chromosomes arise in the absence of condensin during fast replication in B. subtilis.
Curr Biol. 2014 Feb 3;24(3):293-8. doi: 10.1016/j.cub.2013.12.049. Epub 2014 Jan 16.
9
Chromosome organization: original condensins.
Curr Biol. 2014 Feb 3;24(3):R111-3. doi: 10.1016/j.cub.2013.12.033.

引用本文的文献

1
Replisomes restrict SMC translocation in vivo.
Nat Commun. 2025 Aug 4;16(1):7151. doi: 10.1038/s41467-025-62596-y.
2
Coupling chromosome organization to genome segregation in Archaea.
Nat Commun. 2025 Jul 22;16(1):6759. doi: 10.1038/s41467-025-61997-3.
3
Extrusion fountains are restricted by WAPL-dependent cohesin release and CTCF barriers.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf549.
7
Cohesin organizes 3D DNA contacts surrounding active enhancers in .
Genome Res. 2025 May 2;35(5):1108-1123. doi: 10.1101/gr.279365.124.
8
Differential genome organization revealed by comparative topological analysis of strains H37Rv and H37Ra.
mSystems. 2025 May 20;10(5):e0056224. doi: 10.1128/msystems.00562-24. Epub 2025 Apr 7.
9
Chromosome segregation dynamics during the cell cycle of .
bioRxiv. 2025 Feb 19:2025.02.18.638847. doi: 10.1101/2025.02.18.638847.
10
Chromosomal domain formation by archaeal SMC, a roadblock protein, and DNA structure.
Nat Commun. 2025 Feb 19;16(1):1312. doi: 10.1038/s41467-025-56197-y.

本文引用的文献

1
Formation of Chromosomal Domains by Loop Extrusion.
Cell Rep. 2016 May 31;15(9):2038-49. doi: 10.1016/j.celrep.2016.04.085. Epub 2016 May 19.
2
Compaction and segregation of sister chromatids via active loop extrusion.
Elife. 2016 May 18;5:e14864. doi: 10.7554/eLife.14864.
3
Mapping Topoisomerase IV Binding and Activity Sites on the E. coli Genome.
PLoS Genet. 2016 May 12;12(5):e1006025. doi: 10.1371/journal.pgen.1006025. eCollection 2016 May.
4
Single-Molecule Imaging Reveals a Collapsed Conformational State for DNA-Bound Cohesin.
Cell Rep. 2016 May 3;15(5):988-998. doi: 10.1016/j.celrep.2016.04.003. Epub 2016 Apr 21.
5
The 3D Genome as Moderator of Chromosomal Communication.
Cell. 2016 Mar 10;164(6):1110-1121. doi: 10.1016/j.cell.2016.02.007.
8
Multistep assembly of DNA condensation clusters by SMC.
Nat Commun. 2016 Jan 4;7:10200. doi: 10.1038/ncomms10200.
9
Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes.
Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):E6456-65. doi: 10.1073/pnas.1518552112. Epub 2015 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验