Suppr超能文献

中段前肾上腺髓质素在不同疾病严重程度的脓毒症中预测死亡率的准确性更高。

Superior accuracy of mid-regional proadrenomedullin for mortality prediction in sepsis with varying levels of illness severity.

作者信息

Andaluz-Ojeda David, Nguyen H Bryant, Meunier-Beillard Nicolas, Cicuéndez Ramón, Quenot Jean-Pierre, Calvo Dolores, Dargent Auguste, Zarca Esther, Andrés Cristina, Nogales Leonor, Eiros Jose María, Tamayo Eduardo, Gandía Francisco, Bermejo-Martín Jesús F, Charles Pierre Emmanuel

机构信息

Servicio de Medicina Intensiva, Hospital Clínico Universitario, Avda Ramón y Cajal 3, 47005, Valladolid, Spain.

Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario, Avda Ramón y Cajal 3, 47005, Valladolid, Spain.

出版信息

Ann Intensive Care. 2017 Dec;7(1):15. doi: 10.1186/s13613-017-0238-9. Epub 2017 Feb 10.

Abstract

BACKGROUND

The use of novel sepsis biomarkers has increased in recent years. However, their prognostic value with respect to illness severity has not been explored. In this work, we examined the ability of mid-regional proadrenomedullin (MR-proADM) in predicting mortality in sepsis patients with different degrees of organ failure, compared to that of procalcitonin, C-reactive protein and lactate.

METHODS

This was a two-centre prospective observational cohort, enrolling severe sepsis or septic shock patients admitted to the ICU. Plasma biomarkers were measured during the first 12 h of admission. The association between biomarkers and 28-day mortality was assessed by Cox regression analysis and Kaplan-Meier curves. Patients were divided into three groups as evaluated by the Sequential Organ Failure Assessment (SOFA) score. The accuracy of the biomarkers for mortality was determined by area under the receiver operating characteristic curve (AUROC) analysis.

RESULTS

A total of 326 patients with severe sepsis (21.7%) or septic shock (79.3%) were enrolled with a 28-day mortality rate of 31.0%. Only MR-proADM and lactate were associated with mortality in the multivariate analysis: hazard ratio 8.5 versus 3.4 (p < 0.001). MR-proADM showed the best AUROC for mortality prediction at 28 days in the analysis over the entire cohort (AUROC [95% CI] 0.79 [0.74-0.84]) (p < 0.001). When patients were stratified by the degree of organ failure, MR-proADM was the only biomarker to predict mortality in all severity groups (SOFA ≤ 6, SOFA = 7-12, and SOFA ≥ 13), AUROC [95% CI] of 0.75 [0.61-0.88], 0.74 [0.66-0.83] and 0.73 [0.59-0.86], respectively (p < 0.05). All patients with MR-proADM concentrations ≤0.88 nmol/L survived up to 28 days. In patients with SOFA ≤ 6, the addition of MR-proADM to the SOFA score increased the ability of SOFA to identify non-survivors, AUROC [95% CI] 0.70 [0.58-0.82] and 0.77 [0.66-0.88], respectively (p < 0.05 for both).

CONCLUSIONS

The performance of prognostic biomarkers in sepsis is highly influenced by disease severity. MR-proADM accuracy to predict mortality is not affected by the degree of organ failure. Thus, it is a good candidate in the early identification of sepsis patients with moderate disease severity but at risk of mortality.

摘要

背景

近年来,新型脓毒症生物标志物的应用有所增加。然而,它们在疾病严重程度方面的预后价值尚未得到探索。在本研究中,我们比较了中段肾上腺髓质素原(MR-proADM)与降钙素原、C反应蛋白和乳酸相比,在预测不同程度器官衰竭的脓毒症患者死亡率方面的能力。

方法

这是一项双中心前瞻性观察队列研究,纳入入住重症监护病房(ICU)的严重脓毒症或脓毒性休克患者。在入院后的前12小时内测量血浆生物标志物。通过Cox回归分析和Kaplan-Meier曲线评估生物标志物与28天死亡率之间的关联。根据序贯器官衰竭评估(SOFA)评分将患者分为三组。通过受试者操作特征曲线(AUROC)分析确定生物标志物对死亡率的预测准确性。

结果

共纳入326例严重脓毒症(21.7%)或脓毒性休克(79.3%)患者,28天死亡率为31.0%。多因素分析中仅MR-proADM和乳酸与死亡率相关:风险比分别为8.5和3.4(p<0.001)。在整个队列分析中,MR-proADM在预测28天死亡率方面显示出最佳的AUROC(AUROC[95%CI]0.79[憨包0.74-0.84])(p<0.001)。当根据器官衰竭程度对患者进行分层时,MR-proADM是所有严重程度组(SOFA≤6、SOFA=7-12和SOFA≥13)中唯一能预测死亡率的生物标志物,其AUROC[95%CI]分别为0.75[0.61-0.88]、0.74[0.66-0.83]和0.73[0.59-0.86](p<0.05)。所有MR-proADM浓度≤0.88 nmol/L的患者均存活至28天。在SOFA≤6的患者中,将MR-proADM加入SOFA评分可提高SOFA识别非存活者的能力,AUROC[95%CI]分别为0.70[0.58-0.82]和0.77[0.66-0.88](两者p均<0.05)。

结论

脓毒症中预后生物标志物的性能受疾病严重程度的高度影响MR-proADM预测死亡率的准确性不受器官衰竭程度的影响。因此,它是早期识别疾病严重程度中等但有死亡风险的脓毒症患者的良好候选指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7e2/5307393/2dc3e898c3d8/13613_2017_238_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验