Suppr超能文献

拟南芥线粒体蛋白酶FtSH4通过调控WRKY依赖的水杨酸积累和信号传导参与叶片衰老。

The Arabidopsis Mitochondrial Protease FtSH4 Is Involved in Leaf Senescence via Regulation of WRKY-Dependent Salicylic Acid Accumulation and Signaling.

作者信息

Zhang Shengchun, Li Cui, Wang Rui, Chen Yaxue, Shu Si, Huang Ruihua, Zhang Daowei, Li Jian, Xiao Shi, Yao Nan, Yang Chengwei

机构信息

Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and.

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.).

出版信息

Plant Physiol. 2017 Apr;173(4):2294-2307. doi: 10.1104/pp.16.00008. Epub 2017 Mar 1.

Abstract

Mitochondria and autophagy play important roles in the networks that regulate plant leaf senescence and cell death. However, the molecular mechanisms underlying the interactions between mitochondrial signaling and autophagy are currently not well understood. This study characterized the function of the Arabidopsis () mitochondrial AAA-protease gene in regulating autophagy and senescence, finding that FtSH4 mediates WRKY-dependent salicylic acid (SA) accumulation and signaling. Knockout of in the mutant resulted in severe leaf senescence, cell death, and high autophagy levels. The level of SA increased dramatically in the mutant. Expression of in the mutant led to decreased SA levels and suppressed the leaf senescence and cell death phenotypes. The transcript levels of several SA synthesis and signaling genes, including (), (), and (), increased significantly in the mutants compared with the wild type. Loss of function of , , or in the mutant reversed the senescence and autophagy phenotypes. Furthermore, mutants had elevated levels of transcripts of several genes, including , , , , , and ; all of these WRKY proteins can bind to the promoter of Loss of function of in the mutants decreased the levels of SA and reversed the senescence phenotype. Taken together, these results suggest that the mitochondrial ATP-dependent protease FtSH4 may regulate the expression of genes by modifying the level of reactive oxygen species and the WRKY transcription factors that control SA synthesis and signaling in autophagy and senescence.

摘要

线粒体和自噬在调节植物叶片衰老和细胞死亡的网络中发挥着重要作用。然而,目前对于线粒体信号传导与自噬之间相互作用的分子机制尚不清楚。本研究对拟南芥线粒体AAA蛋白酶基因在调节自噬和衰老中的功能进行了表征,发现FtSH4介导WRKY依赖的水杨酸(SA)积累和信号传导。在突变体中敲除导致严重的叶片衰老、细胞死亡和高自噬水平。突变体中SA水平显著增加。在突变体中过表达导致SA水平降低,并抑制了叶片衰老和细胞死亡表型。与野生型相比,突变体中几个SA合成和信号基因的转录水平,包括()、()和(),显著增加。在突变体中、或功能丧失逆转了衰老和自噬表型。此外,突变体中几个基因的转录水平升高,包括、、、、和;所有这些WRKY蛋白都可以结合到的启动子上。在突变体中功能丧失降低了SA水平并逆转了衰老表型。综上所述,这些结果表明线粒体ATP依赖的蛋白酶FtSH4可能通过改变活性氧水平和控制自噬和衰老中SA合成及信号传导的WRKY转录因子来调节基因的表达。

相似文献

3
The NPR1-WRKY46-WRKY6 signaling cascade mediates probenazole/salicylic acid-elicited leaf senescence in Arabidopsis thaliana.
J Integr Plant Biol. 2021 May;63(5):924-936. doi: 10.1111/jipb.13044. Epub 2021 Mar 8.
7
ATG4 Mediated ES4326-Induced Autophagy Dependent on Salicylic Acid in .
Int J Mol Sci. 2020 Jul 21;21(14):5147. doi: 10.3390/ijms21145147.
10
Ozone-induced expression of the Arabidopsis FAD7 gene requires salicylic acid, but not NPR1 and SID2.
Plant Cell Physiol. 2006 Mar;47(3):355-62. doi: 10.1093/pcp/pci253. Epub 2006 Jan 13.

引用本文的文献

2
Mitochondrial Proteases and Their Roles in Mitophagy in Plants, Animals, and Yeast.
Plant Cell Physiol. 2025 Apr 23. doi: 10.1093/pcp/pcaf038.
3
The basal level of salicylic acid represses the PRT6 N-degron pathway to modulate root growth and stress response in rice.
Plant Commun. 2025 Apr 14;6(4):101239. doi: 10.1016/j.xplc.2025.101239. Epub 2025 Jan 10.
5
Hydrogen peroxide participates in leaf senescence by inhibiting CHLI1 activity.
Plant Cell Rep. 2024 Oct 9;43(11):258. doi: 10.1007/s00299-024-03350-4.
8
Poor shoot and leaf growth in Huanglongbing-affected sweet orange is associated with increased investment in defenses.
Front Plant Sci. 2023 Dec 19;14:1305815. doi: 10.3389/fpls.2023.1305815. eCollection 2023.
9
Leaf senescence: progression, regulation, and application.
Mol Hortic. 2021 Jun 16;1(1):5. doi: 10.1186/s43897-021-00006-9.

本文引用的文献

3
Toward Systems Understanding of Leaf Senescence: An Integrated Multi-Omics Perspective on Leaf Senescence Research.
Mol Plant. 2016 Jun 6;9(6):813-25. doi: 10.1016/j.molp.2016.04.017. Epub 2016 May 10.
5
Mitochondrial ATP-dependent proteases in protection against accumulation of carbonylated proteins.
Mitochondrion. 2014 Nov;19 Pt B:245-51. doi: 10.1016/j.mito.2014.03.005. Epub 2014 Mar 21.
7
Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14807-12. doi: 10.1073/pnas.1302702110. Epub 2013 Aug 19.
9
Hormonal regulation of leaf senescence through integration of developmental and stress signals.
Plant Mol Biol. 2013 Aug;82(6):547-61. doi: 10.1007/s11103-013-0043-2. Epub 2013 Mar 16.
10
Redox signaling in plants.
Antioxid Redox Signal. 2013 Jun 1;18(16):2087-90. doi: 10.1089/ars.2013.5278. Epub 2013 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验