Suppr超能文献

肾内肾素-血管紧张素系统的生理学与病理生理学:最新进展

Physiology and Pathophysiology of the Intrarenal Renin-Angiotensin System: An Update.

作者信息

Yang Tianxin, Xu Chuanming

机构信息

Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and

Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China.

出版信息

J Am Soc Nephrol. 2017 Apr;28(4):1040-1049. doi: 10.1681/ASN.2016070734. Epub 2017 Mar 2.

Abstract

The renin-angiotensin system (RAS) has a pivotal role in the maintenance of extracellular volume homeostasis and blood pressure through complex mechanisms. Apart from the well known systemic RAS, occurrence of a local RAS has been documented in multiple tissues, including the kidney. A large body of recent evidence from pharmacologic and genetic studies, particularly those using various transgenic approaches to manipulate intrarenal levels of RAS components, has established the important role of intrarenal RAS in hypertension. Recent studies have also begun to unravel the molecular mechanisms that govern intrarenal RAS activity. This local system is under the control of complex regulatory networks consisting of positive regulators of (pro)renin receptor, Wnt/-catenin signaling, and PGE/PGE receptor EP subtype, and negative regulators of Klotho, vitamin D receptor, and liver X receptors. This review highlights recent advances in defining the regulation and function of intrarenal RAS as a unique entity separate from systemic angiotensin II generation.

摘要

肾素-血管紧张素系统(RAS)通过复杂机制在维持细胞外液容量稳态和血压方面发挥关键作用。除了众所周知的全身RAS外,在包括肾脏在内的多个组织中已证实存在局部RAS。来自药理学和遗传学研究的大量最新证据,特别是那些使用各种转基因方法来操纵肾脏内RAS成分水平的研究,已经确立了肾脏内RAS在高血压中的重要作用。最近的研究也开始揭示控制肾脏内RAS活性的分子机制。这个局部系统受复杂调控网络的控制,该网络由(前)肾素受体的正调控因子、Wnt/β-连环蛋白信号通路和前列腺素E/前列腺素E受体EP亚型,以及Klotho、维生素D受体和肝脏X受体的负调控因子组成。本综述重点介绍了在将肾脏内RAS的调控和功能定义为与全身血管紧张素II生成分开的独特实体方面的最新进展。

相似文献

1
Physiology and Pathophysiology of the Intrarenal Renin-Angiotensin System: An Update.
J Am Soc Nephrol. 2017 Apr;28(4):1040-1049. doi: 10.1681/ASN.2016070734. Epub 2017 Mar 2.
3
The intrarenal renin-angiotensin system in hypertension: insights from mathematical modelling.
J Math Biol. 2023 Mar 23;86(4):58. doi: 10.1007/s00285-023-01891-y.
5
The intrarenal renin-angiotensin system in hypertension.
Adv Chronic Kidney Dis. 2015 May;22(3):204-10. doi: 10.1053/j.ackd.2014.11.004.
6
The importance of the intrarenal renin-angiotensin system.
Nat Clin Pract Nephrol. 2009 Feb;5(2):89-100. doi: 10.1038/ncpneph1015. Epub 2008 Dec 9.
7
The interaction partners of (pro)renin receptor in the distal nephron.
FASEB J. 2020 Nov;34(11):14136-14149. doi: 10.1096/fj.202001711R. Epub 2020 Sep 25.
8
Wnt/β-catenin signaling and renin-angiotensin system in chronic kidney disease.
Curr Opin Nephrol Hypertens. 2016 Mar;25(2):100-6. doi: 10.1097/MNH.0000000000000205.

引用本文的文献

2
Liver-Directed Gene Therapy Mitigates Early Nephropathy in Murine Glycogen Storage Disease Type Ia.
J Inherit Metab Dis. 2025 Jul;48(4):e70048. doi: 10.1002/jimd.70048.
3
Long-Term Alterations of Renal Microvasculature in Rats Following Maternal PM Exposure: Vitamin D Effects.
Biomedicines. 2025 May 10;13(5):1166. doi: 10.3390/biomedicines13051166.
4
Apelin-13 exerts protective effects against acute kidney injury by lysosomal function regulation.
Ren Fail. 2025 Dec;47(1):2480243. doi: 10.1080/0886022X.2025.2480243. Epub 2025 Mar 24.
7
Poria cocos: traditional uses, triterpenoid components and their renoprotective pharmacology.
Acta Pharmacol Sin. 2025 Apr;46(4):836-851. doi: 10.1038/s41401-024-01404-7. Epub 2024 Oct 31.
9
The P2Y6 Receptor as a Potential Keystone in Essential Hypertension.
Function (Oxf). 2024 Nov 20;5(6). doi: 10.1093/function/zqae045.
10
Effect of Tissue-derived Angiotensinogen on Kidney Injury and Fibrosis in Obstructive Nephropathy.
In Vivo. 2024 Sep-Oct;38(5):2107-2114. doi: 10.21873/invivo.13672.

本文引用的文献

1
Chronic Hyperphosphatemia and Vascular Calcification Are Reduced by Stable Delivery of Soluble Klotho.
J Am Soc Nephrol. 2017 Apr;28(4):1162-1174. doi: 10.1681/ASN.2015111266. Epub 2016 Nov 11.
2
Vascular Smooth Muscle-Specific EP4 Receptor Deletion in Mice Exacerbates Angiotensin II-Induced Renal Injury.
Antioxid Redox Signal. 2016 Oct 20;25(12):642-656. doi: 10.1089/ars.2015.6592. Epub 2016 Aug 5.
3
Collecting duct (pro)renin receptor targets ENaC to mediate angiotensin II-induced hypertension.
Am J Physiol Renal Physiol. 2017 Feb 1;312(2):F245-F253. doi: 10.1152/ajprenal.00178.2016. Epub 2016 Apr 27.
4
Renal tubular epithelial cell prorenin receptor regulates blood pressure and sodium transport.
Am J Physiol Renal Physiol. 2016 Jul 1;311(1):F186-94. doi: 10.1152/ajprenal.00088.2016. Epub 2016 Apr 6.
5
Renal Atp6ap2/(Pro)renin Receptor Is Required for Normal Vacuolar H+-ATPase Function but Not for the Renin-Angiotensin System.
J Am Soc Nephrol. 2016 Nov;27(11):3320-3330. doi: 10.1681/ASN.2015080915. Epub 2016 Apr 4.
6
Antidiuretic Action of Collecting Duct (Pro)Renin Receptor Downstream of Vasopressin and PGE2 Receptor EP4.
J Am Soc Nephrol. 2016 Oct;27(10):3022-3034. doi: 10.1681/ASN.2015050592. Epub 2016 Mar 21.
7
Soluble (pro)renin receptor via β-catenin enhances urine concentration capability as a target of liver X receptor.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):E1898-906. doi: 10.1073/pnas.1602397113. Epub 2016 Mar 16.
8
On the Origin of Urinary Renin: A Translational Approach.
Hypertension. 2016 May;67(5):927-33. doi: 10.1161/HYPERTENSIONAHA.115.07012. Epub 2016 Feb 29.
9
Augmentation of angiotensinogen expression in the proximal tubule by intracellular angiotensin II via AT1a/MAPK/NF-кB signaling pathways.
Am J Physiol Renal Physiol. 2016 May 1;310(10):F1103-12. doi: 10.1152/ajprenal.00350.2015. Epub 2016 Feb 10.
10
Sequential activation of the intrarenal renin-angiotensin system in the progression of hypertensive nephropathy in Goldblatt rats.
Am J Physiol Renal Physiol. 2016 Jul 1;311(1):F195-206. doi: 10.1152/ajprenal.00001.2015. Epub 2016 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验