Suppr超能文献

利用增加的细胞质核苷激酶活性靶向急性髓系白血病中的线粒体DNA和氧化磷酸化。

Leveraging increased cytoplasmic nucleoside kinase activity to target mtDNA and oxidative phosphorylation in AML.

作者信息

Liyanage Sanduni U, Hurren Rose, Voisin Veronique, Bridon Gaëlle, Wang Xiaoming, Xu ChangJiang, MacLean Neil, Siriwardena Thirushi P, Gronda Marcela, Yehudai Dana, Sriskanthadevan Shrivani, Avizonis Daina, Shamas-Din Aisha, Minden Mark D, Bader Gary D, Laposa Rebecca, Schimmer Aaron D

机构信息

Princess Margaret Cancer Centre, Toronto, ON, Canada.

Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.

出版信息

Blood. 2017 May 11;129(19):2657-2666. doi: 10.1182/blood-2016-10-741207. Epub 2017 Mar 10.

Abstract

Mitochondrial DNA (mtDNA) biosynthesis requires replication factors and adequate nucleotide pools from the mitochondria and cytoplasm. We performed gene expression profiling analysis of 542 human acute myeloid leukemia (AML) samples and identified 55% with upregulated mtDNA biosynthesis pathway expression compared with normal hematopoietic cells. Genes that support mitochondrial nucleotide pools, including mitochondrial nucleotide transporters and a subset of cytoplasmic nucleoside kinases, were also increased in AML compared with normal hematopoietic samples. Knockdown of cytoplasmic nucleoside kinases reduced mtDNA levels in AML cells, demonstrating their contribution in maintaining mtDNA. To assess cytoplasmic nucleoside kinase pathway activity, we used a nucleoside analog 2'3'-dideoxycytidine (ddC), which is phosphorylated to the activated antimetabolite, 2'3'-dideoxycytidine triphosphate by cytoplasmic nucleoside kinases. ddC is a selective inhibitor of the mitochondrial DNA polymerase γ. ddC was preferentially activated in AML cells compared with normal hematopoietic progenitor cells. ddC treatment inhibited mtDNA replication, oxidative phosphorylation, and induced cytotoxicity in a panel of AML cell lines. Furthermore, ddC preferentially inhibited mtDNA replication in a subset of primary human leukemia cells and selectively targeted leukemia cells while sparing normal progenitor cells. In animal models of human AML, treatment with ddC decreased mtDNA, electron transport chain proteins, and induced tumor regression without toxicity. ddC also targeted leukemic stem cells in secondary AML xenotransplantation assays. Thus, AML cells have increased cytidine nucleoside kinase activity that regulates mtDNA biogenesis and can be leveraged to selectively target oxidative phosphorylation in AML.

摘要

线粒体DNA(mtDNA)的生物合成需要来自线粒体和细胞质的复制因子以及充足的核苷酸池。我们对542例人类急性髓系白血病(AML)样本进行了基因表达谱分析,发现与正常造血细胞相比,55%的样本中mtDNA生物合成途径的表达上调。与正常造血样本相比,支持线粒体核苷酸池的基因,包括线粒体核苷酸转运体和一部分细胞质核苷激酶,在AML中也有所增加。敲低细胞质核苷激酶可降低AML细胞中的mtDNA水平,表明它们在维持mtDNA方面的作用。为了评估细胞质核苷激酶途径的活性,我们使用了核苷类似物2'3'-二脱氧胞苷(ddC),它被细胞质核苷激酶磷酸化为活性抗代谢物2'3'-二脱氧胞苷三磷酸。ddC是线粒体DNA聚合酶γ的选择性抑制剂。与正常造血祖细胞相比,ddC在AML细胞中被优先激活。ddC处理抑制了一组AML细胞系中的mtDNA复制、氧化磷酸化,并诱导了细胞毒性。此外,ddC优先抑制一部分原发性人类白血病细胞中的mtDNA复制,并选择性地靶向白血病细胞,同时不损伤正常祖细胞。在人类AML的动物模型中,ddC处理可降低mtDNA、电子传递链蛋白水平,并诱导肿瘤消退且无毒性。ddC在继发性AML异种移植试验中也靶向白血病干细胞。因此,AML细胞中胞苷核苷激酶活性增加,调节mtDNA生物合成,可利用这一点选择性地靶向AML中的氧化磷酸化。

相似文献

1
Leveraging increased cytoplasmic nucleoside kinase activity to target mtDNA and oxidative phosphorylation in AML.
Blood. 2017 May 11;129(19):2657-2666. doi: 10.1182/blood-2016-10-741207. Epub 2017 Mar 10.
3
Increased mitochondrial DNA copy-number in CEM cells resistant to delayed toxicity of 2',3'-dideoxycytidine.
Biochem Pharmacol. 2008 Mar 15;75(6):1313-21. doi: 10.1016/j.bcp.2007.12.002. Epub 2007 Dec 15.
6
2',3'-Dideoxycytidine metabolism in a new drug-resistant cell line.
Biochem J. 1995 Nov 15;312 ( Pt 1)(Pt 1):115-23. doi: 10.1042/bj3120115.
8
Differential effects of nucleoside analogs on oxidative phosphorylation in human pancreatic cells.
Dig Dis Sci. 2001 Sep;46(9):1853-63. doi: 10.1023/a:1010618627594.
10
Mitochondrial DNA damage by bleomycin induces AML cell death.
Apoptosis. 2015 Jun;20(6):811-20. doi: 10.1007/s10495-015-1119-z.

引用本文的文献

1
Mitochondrial metabolism and cancer therapeutic innovation.
Signal Transduct Target Ther. 2025 Aug 4;10(1):245. doi: 10.1038/s41392-025-02311-x.
3
Mitochondrial metabolism sustains DNMT3A-R882-mutant clonal haematopoiesis.
Nature. 2025 Apr 16. doi: 10.1038/s41586-025-08980-6.
4
Deregulation of mitochondrial gene expression in cancer: mechanisms and therapeutic opportunities.
Br J Cancer. 2024 Nov;131(9):1415-1424. doi: 10.1038/s41416-024-02817-1. Epub 2024 Aug 14.
8
A Leukemic Target with a Thousand Faces: The Mitochondria.
Int J Mol Sci. 2023 Aug 22;24(17):13069. doi: 10.3390/ijms241713069.
10
Metabolism in acute myeloid leukemia: mechanistic insights and therapeutic targets.
Blood. 2023 Mar 9;141(10):1119-1135. doi: 10.1182/blood.2022018092.

本文引用的文献

1
Deoxyribonucleotide metabolism, mutagenesis and cancer.
Nat Rev Cancer. 2015 Sep;15(9):528-39. doi: 10.1038/nrc3981.
3
AML cells have low spare reserve capacity in their respiratory chain that renders them susceptible to oxidative metabolic stress.
Blood. 2015 Mar 26;125(13):2120-30. doi: 10.1182/blood-2014-08-594408. Epub 2015 Jan 28.
4
Regulation of mammalian nucleotide metabolism and biosynthesis.
Nucleic Acids Res. 2015 Feb 27;43(4):2466-85. doi: 10.1093/nar/gkv047. Epub 2015 Jan 27.
5
The human SLC25A33 and SLC25A36 genes of solute carrier family 25 encode two mitochondrial pyrimidine nucleotide transporters.
J Biol Chem. 2014 Nov 28;289(48):33137-48. doi: 10.1074/jbc.M114.610808. Epub 2014 Oct 15.
7
BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells.
Cell Stem Cell. 2013 Mar 7;12(3):329-41. doi: 10.1016/j.stem.2012.12.013. Epub 2013 Jan 17.
8
Mitochondria: in sickness and in health.
Cell. 2012 Mar 16;148(6):1145-59. doi: 10.1016/j.cell.2012.02.035.
9
Defects in mitochondrial DNA replication and human disease.
Crit Rev Biochem Mol Biol. 2012 Jan-Feb;47(1):64-74. doi: 10.3109/10409238.2011.632763.
10
Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia.
Cancer Cell. 2011 Nov 15;20(5):674-88. doi: 10.1016/j.ccr.2011.10.015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验