Suppr超能文献

自然界中的溶原性:温和噬菌体的机制、影响及生态学

Lysogeny in nature: mechanisms, impact and ecology of temperate phages.

作者信息

Howard-Varona Cristina, Hargreaves Katherine R, Abedon Stephen T, Sullivan Matthew B

机构信息

Department of Microbiology, The Ohio State University, Columbus, OH, USA.

Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.

出版信息

ISME J. 2017 Jul;11(7):1511-1520. doi: 10.1038/ismej.2017.16. Epub 2017 Mar 14.

Abstract

Viruses that infect bacteria (phages) can influence bacterial community dynamics, bacterial genome evolution and ecosystem biogeochemistry. These influences differ depending on whether phages establish lytic, chronic or lysogenic infections. Although the first two produce virion progeny, with lytic infections resulting in cell destruction, phages undergoing lysogenic infections replicate with cells without producing virions. The impacts of lysogeny are numerous and well-studied at the cellular level, but ecosystem-level consequences remain underexplored compared to those of lytic infections. Here, we review lysogeny from molecular mechanisms to ecological patterns to emerging approaches of investigation. Our goal is to highlight both its diversity and importance in complex communities. Altogether, using a combined viral ecology toolkit that is applied across broad model systems and environments will help us understand more of the diverse lifestyles and ecological impacts of lysogens in nature.

摘要

感染细菌的病毒(噬菌体)能够影响细菌群落动态、细菌基因组进化以及生态系统生物地球化学。这些影响因噬菌体建立的是裂解性感染、慢性感染还是溶原性感染而有所不同。尽管前两种感染会产生病毒粒子后代,其中裂解性感染会导致细胞破坏,但经历溶原性感染的噬菌体与细胞一起复制,不产生病毒粒子。溶原性的影响在细胞水平上有很多且已得到充分研究,但与裂解性感染相比,其在生态系统层面的后果仍未得到充分探索。在这里,我们从分子机制到生态模式再到新兴的研究方法对溶原性进行综述。我们的目标是突出其在复杂群落中的多样性和重要性。总之,使用一套应用于广泛模型系统和环境的综合病毒生态学工具包,将有助于我们更深入地了解自然界中溶原菌的多样生活方式和生态影响。

相似文献

1
Lysogeny in nature: mechanisms, impact and ecology of temperate phages.
ISME J. 2017 Jul;11(7):1511-1520. doi: 10.1038/ismej.2017.16. Epub 2017 Mar 14.
2
Repeated outbreaks drive the evolution of bacteriophage communication.
Elife. 2021 Jan 18;10:e58410. doi: 10.7554/eLife.58410.
3
Unveiling Ecological and Genetic Novelty within Lytic and Lysogenic Viral Communities of Hot Spring Phototrophic Microbial Mats.
Microbiol Spectr. 2021 Dec 22;9(3):e0069421. doi: 10.1128/Spectrum.00694-21. Epub 2021 Nov 17.
4
Diversity of phage infection types and associated terminology: the problem with 'Lytic or lysogenic'.
FEMS Microbiol Lett. 2016 Apr;363(7). doi: 10.1093/femsle/fnw047. Epub 2016 Feb 29.
5
Variability and host density independence in inductions-based estimates of environmental lysogeny.
Nat Microbiol. 2017 Apr 28;2:17064. doi: 10.1038/nmicrobiol.2017.64.
6
Cultivation-based assessment of lysogeny among soil bacteria.
Microb Ecol. 2008 Oct;56(3):437-47. doi: 10.1007/s00248-008-9362-2. Epub 2008 Mar 6.
7
Molecular Basis of Lysis-Lysogeny Decisions in Gram-Positive Phages.
Annu Rev Microbiol. 2021 Oct 8;75:563-581. doi: 10.1146/annurev-micro-033121-020757. Epub 2021 Aug 3.
8
Bacteriophages: an overview of the control strategies against multiple bacterial infections in different fields.
J Basic Microbiol. 2019 Feb;59(2):123-133. doi: 10.1002/jobm.201800412. Epub 2018 Nov 28.
9
Lysogeny in the oceans: Lessons from cultivated model systems and a reanalysis of its prevalence.
Environ Microbiol. 2020 Dec;22(12):4919-4933. doi: 10.1111/1462-2920.15233. Epub 2020 Sep 29.
10
Seasonal variations of phage life strategies and bacterial physiological states in three northern temperate lakes.
Environ Microbiol. 2010 Mar;12(3):628-41. doi: 10.1111/j.1462-2920.2009.02103.x. Epub 2009 Nov 25.

引用本文的文献

3
Lysogenic control of Bacillus subtilis morphology and fitness by Spbetavirus phi3T.
Commun Biol. 2025 Aug 18;8(1):1238. doi: 10.1038/s42003-025-08672-x.
4
Crosstalk between inovirus core gene and accessory toxin-antitoxin system mediates polylysogeny.
Nat Commun. 2025 Aug 7;16(1):7268. doi: 10.1038/s41467-025-62378-6.
6
Discovering Broader Host Ranges and an IS-bound Prophage Class Through Long-Read Metagenomics.
bioRxiv. 2025 May 10:2025.05.09.652943. doi: 10.1101/2025.05.09.652943.
7
Genomic and Functional Characterization of Novel Phages Targeting Multidrug-Resistant .
Int J Mol Sci. 2025 Jun 26;26(13):6141. doi: 10.3390/ijms26136141.
8
Risk Profile of Bacteriophages in the Food Chain.
Foods. 2025 Jun 26;14(13):2257. doi: 10.3390/foods14132257.
9
Arctic Ocean virus communities and their seasonality, bipolarity, and prokaryotic associations.
Nat Commun. 2025 Jul 11;16(1):6427. doi: 10.1038/s41467-025-61568-6.
10
Deciphering the comprehensive microbiome of glacier-fed Ganges and functional aspects: implications for one health.
Microbiol Spectr. 2025 Aug 5;13(8):e0172024. doi: 10.1128/spectrum.01720-24. Epub 2025 Jul 7.

本文引用的文献

1
Re-examination of the relationship between marine virus and microbial cell abundances.
Nat Microbiol. 2016 Jan 25;1:15024. doi: 10.1038/nmicrobiol.2015.24.
2
Uncovering Earth's virome.
Nature. 2016 Aug 25;536(7617):425-30. doi: 10.1038/nature19094. Epub 2016 Aug 17.
3
Bacteriophage P2.
Bacteriophage. 2016 Feb 18;6(1):e1145782. doi: 10.1080/21597081.2016.1145782. eCollection 2016 Jan-Mar.
4
Genetic and life-history traits associated with the distribution of prophages in bacteria.
ISME J. 2016 Nov;10(11):2744-2754. doi: 10.1038/ismej.2016.47. Epub 2016 Mar 25.
5
Lytic to temperate switching of viral communities.
Nature. 2016 Mar 24;531(7595):466-70. doi: 10.1038/nature17193. Epub 2016 Mar 16.
6
Mechanisms of DNA Packaging by Large Double-Stranded DNA Viruses.
Annu Rev Virol. 2015 Nov;2(1):351-78. doi: 10.1146/annurev-virology-100114-055212. Epub 2015 Sep 10.
7
The role of temperate bacteriophages in bacterial infection.
FEMS Microbiol Lett. 2016 Mar;363(5):fnw015. doi: 10.1093/femsle/fnw015. Epub 2016 Jan 28.
8
Computational approaches to predict bacteriophage-host relationships.
FEMS Microbiol Rev. 2016 Mar;40(2):258-72. doi: 10.1093/femsre/fuv048. Epub 2015 Dec 9.
9
Diversity and Ecology of Viruses in Hyperarid Desert Soils.
Appl Environ Microbiol. 2015 Nov 20;82(3):770-7. doi: 10.1128/AEM.02651-15. Print 2016 Feb 1.
10
MICROBIOME. A unified initiative to harness Earth's microbiomes.
Science. 2015 Oct 30;350(6260):507-8. doi: 10.1126/science.aac8480. Epub 2015 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验