Suppr超能文献

使用基因编码的分裂生物传感器检测技术分裂TEV来表征动态蛋白质-蛋白质相互作用

Characterizing Dynamic Protein-Protein Interactions Using the Genetically Encoded Split Biosensor Assay Technique Split TEV.

作者信息

Wintgens Jan P, Rossner Moritz J, Wehr Michael C

机构信息

Department of Psychiatry, Ludwig Maximilian University of Munich, Nussbaumstr. 7, 80336, Munich, Germany.

出版信息

Methods Mol Biol. 2017;1596:219-238. doi: 10.1007/978-1-4939-6940-1_14.

Abstract

Dynamic protein-protein interactions (PPIs) are fundamental building blocks of cellular signaling and monitoring their regulation promotes the understanding of signaling in health and disease. Genetically encoded split protein biosensor assays, such as the split TEV method, have proved to be highly valuable when studying regulated PPIs in living cells. Split TEV is based on the functional complementation of two previously inactive TEV protease fragments fused to interacting proteins and provides a robust, sensitive and flexible readout to monitor PPIs both at the membrane and in the cytosol. Thus, split TEV can be used to analyze interactomes of receptors, membrane-associated proteins, and cytosolic proteins. In particular, split TEV is useful to assay activities of relevant drug targets, such as receptor tyrosine kinases and G protein-coupled receptors, in compound screens. As split TEV uses genetically encoded readouts, including standard reporters based on fluorescence and luminescence, the technique can also be combined with scalable molecular barcode reporter systems, allowing the integration into multiplexed high-throughput assay approaches. Split TEV can be used in standard heterologous cell lines and primary cell types, including neurons, either in a transient or stably integrated format. When using cell lines, the basic protocol takes 30-96 h to complete, depending on the complexity of the experimental question addressed.

摘要

动态蛋白质-蛋白质相互作用(PPIs)是细胞信号传导的基本组成部分,监测其调控有助于理解健康和疾病状态下的信号传导。基因编码的分裂蛋白生物传感器检测方法,如分裂TEV方法,在研究活细胞中受调控的PPIs时已被证明具有很高的价值。分裂TEV基于与相互作用蛋白融合的两个先前无活性的TEV蛋白酶片段的功能互补,为监测膜和细胞质中的PPIs提供了强大、灵敏且灵活的读数。因此,分裂TEV可用于分析受体、膜相关蛋白和细胞质蛋白的相互作用组。特别是,分裂TEV在化合物筛选中用于检测相关药物靶点(如受体酪氨酸激酶和G蛋白偶联受体)的活性很有用。由于分裂TEV使用基因编码的读数,包括基于荧光和发光的标准报告基因,该技术还可与可扩展的分子条形码报告系统相结合,从而能够整合到多重高通量检测方法中。分裂TEV可用于标准异源细胞系和原代细胞类型,包括神经元,采用瞬时或稳定整合的形式。使用细胞系时,根据所解决实验问题的复杂性,基本方案需要30-96小时才能完成。

相似文献

4
Monitoring activities of receptor tyrosine kinases using a universal adapter in genetically encoded split TEV assays.
Cell Mol Life Sci. 2019 Mar;76(6):1185-1199. doi: 10.1007/s00018-018-03003-2. Epub 2019 Jan 8.
5
Split protein biosensor assays in molecular pharmacological studies.
Drug Discov Today. 2016 Mar;21(3):415-29. doi: 10.1016/j.drudis.2015.11.004. Epub 2015 Nov 21.
6
Studying G protein-coupled receptor activation using split-tobacco etch virus assays.
Anal Biochem. 2011 May 15;412(2):141-52. doi: 10.1016/j.ab.2011.01.042. Epub 2011 Feb 2.
7
Monitoring regulated protein-protein interactions using split TEV.
Nat Methods. 2006 Dec;3(12):985-93. doi: 10.1038/nmeth967. Epub 2006 Oct 29.
8
Split-Tobacco Etch Virus (Split-TEV) Method in G Protein-Coupled Receptor Interacting Proteins.
Methods Mol Biol. 2021;2268:223-232. doi: 10.1007/978-1-0716-1221-7_15.
10
A modification of the split-tobacco etch virus method for monitoring interactions between membrane proteins in mammalian cells.
Anal Biochem. 2012 Apr 1;423(1):109-18. doi: 10.1016/j.ab.2012.01.022. Epub 2012 Jan 31.

引用本文的文献

1
Profiling of ERBB receptors and downstream pathways reveals selectivity and hidden properties of ERBB4 antagonists.
iScience. 2024 Jan 9;27(2):108839. doi: 10.1016/j.isci.2024.108839. eCollection 2024 Feb 16.
2
Engineering a switchable single-chain TEV protease to control protein maturation in living neurons.
Bioeng Transl Med. 2022 Feb 22;7(2):e10292. doi: 10.1002/btm2.10292. eCollection 2022 May.
4
Monitoring activities of receptor tyrosine kinases using a universal adapter in genetically encoded split TEV assays.
Cell Mol Life Sci. 2019 Mar;76(6):1185-1199. doi: 10.1007/s00018-018-03003-2. Epub 2019 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验