Suppr超能文献

气道疾病中的线粒体功能障碍

Mitochondrial Dysfunction in Airway Disease.

作者信息

Prakash Y S, Pabelick Christina M, Sieck Gary C

机构信息

Department of Anesthesiology and Perioperative Medicine, and the Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN.

Department of Anesthesiology and Perioperative Medicine, and the Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN.

出版信息

Chest. 2017 Sep;152(3):618-626. doi: 10.1016/j.chest.2017.03.020. Epub 2017 Mar 21.

Abstract

There is increasing appreciation that mitochondria serve cellular functions beyond oxygen sensing and energy production. Accordingly, it has become important to explore noncanonical roles of mitochondria in normal and pathophysiological processes that influence airway structure and function in the context of diseases such as asthma and COPD. Mitochondria can sense upstream processes such as inflammation, infection, tobacco smoke, and environmental insults important in these diseases and in turn can respond to such stimuli through altered mitochondrial protein expression, structure, and resultant dysfunction. Conversely, mitochondrial dysfunction has downstream influences on cytosolic and mitochondrial calcium regulation, airway contractility, gene and protein housekeeping, responses to oxidative stress, proliferation, apoptosis, fibrosis, and certainly metabolism, which are all key aspects of airway disease pathophysiology. Indeed, mitochondrial dysfunction is thought to play a role even in normal processes such as aging and senescence and in conditions such as obesity, which impact airway diseases. Thus, understanding how mitochondrial structure and function play central roles in airway disease may be critical for the development of novel therapeutic avenues targeting dysfunctional mitochondria. In this case, it is likely that mitochondria of airway epithelium, smooth muscle, and fibroblasts play differential roles, consistent with their contributions to disease biology, underlining the challenge of targeting a ubiquitous cellular element of existential importance. This translational review summarizes the current state of understanding of mitochondrial processes that play a role in airway disease pathophysiology and identifying areas of unmet research need and opportunities for novel therapeutic strategies.

摘要

人们越来越认识到,线粒体在细胞中的功能不仅仅是氧感应和能量产生。因此,在哮喘和慢性阻塞性肺疾病等疾病背景下,探索线粒体在影响气道结构和功能的正常及病理生理过程中的非经典作用变得至关重要。线粒体能够感知上游过程,如炎症、感染、烟草烟雾和环境损伤,这些在这些疾病中都很重要,反过来,线粒体可以通过改变线粒体蛋白表达、结构以及由此产生的功能障碍来应对此类刺激。相反,线粒体功能障碍对胞质和线粒体钙调节、气道收缩性、基因和蛋白质的维持、对氧化应激的反应、增殖、凋亡、纤维化以及当然还有代谢都有下游影响,而这些都是气道疾病病理生理学的关键方面。事实上,线粒体功能障碍甚至被认为在衰老和衰老等正常过程以及肥胖等影响气道疾病的情况下都发挥作用。因此,了解线粒体结构和功能如何在气道疾病中发挥核心作用,对于开发针对功能失调线粒体的新型治疗途径可能至关重要。在这种情况下,气道上皮、平滑肌和成纤维细胞的线粒体可能发挥不同的作用,这与其对疾病生物学的贡献一致,突显了针对一个具有生存重要性的普遍存在的细胞成分的挑战。这篇转化性综述总结了目前对在气道疾病病理生理学中发挥作用的线粒体过程的理解现状,并确定了未满足的研究需求领域以及新型治疗策略的机会。

相似文献

1
Mitochondrial Dysfunction in Airway Disease.
Chest. 2017 Sep;152(3):618-626. doi: 10.1016/j.chest.2017.03.020. Epub 2017 Mar 21.
2
Mitochondria dysfunction: A novel therapeutic target in pathological lung remodeling or bystander?
Pharmacol Ther. 2016 Oct;166:96-105. doi: 10.1016/j.pharmthera.2016.06.019. Epub 2016 Jul 1.
3
Mitochondrial regulation of airway smooth muscle functions in health and pulmonary diseases.
Arch Biochem Biophys. 2019 Mar 15;663:109-119. doi: 10.1016/j.abb.2019.01.002. Epub 2019 Jan 8.
4
Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging.
Exp Biol Med (Maywood). 2013 May;238(5):450-60. doi: 10.1177/1535370213493069.
5
Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease.
Am J Physiol Lung Cell Mol Physiol. 2016 Dec 1;311(6):L1113-L1140. doi: 10.1152/ajplung.00370.2016. Epub 2016 Oct 14.
6
Targeting the mitochondria in chronic respiratory diseases.
Mitochondrion. 2022 Nov;67:15-37. doi: 10.1016/j.mito.2022.09.003. Epub 2022 Sep 20.
7
Reconsidering the Role of Mitochondria in Aging.
J Gerontol A Biol Sci Med Sci. 2015 Nov;70(11):1334-42. doi: 10.1093/gerona/glv070. Epub 2015 May 20.
8
Oxidative stress, mitochondrial bioenergetics, and cardiolipin in aging.
Free Radic Biol Med. 2010 May 15;48(10):1286-95. doi: 10.1016/j.freeradbiomed.2010.02.020. Epub 2010 Feb 20.
9
Mitochondrial bioenergetics and pulmonary dysfunction: Current progress and future directions.
Paediatr Respir Rev. 2020 Apr;34:37-45. doi: 10.1016/j.prrv.2019.04.001. Epub 2019 Apr 12.
10
From mitochondria to disease: role of the renin-angiotensin system.
Am J Nephrol. 2007;27(6):545-53. doi: 10.1159/000107757. Epub 2007 Aug 30.

引用本文的文献

2
Diaphragm Muscle: A Pump That Can Not Fail.
Physiol Rev. 2025 Jul 11. doi: 10.1152/physrev.00043.2024.
3
Microcella aerolata GA224 exhibits preventive potential against Streptococcus pneumoniae infection via the gut-lung axis.
World J Microbiol Biotechnol. 2025 Jul 9;41(7):259. doi: 10.1007/s11274-025-04478-5.
4
Mitochondrial dynamics at the intersection of macrophage polarization and metabolism.
Front Immunol. 2025 Mar 24;16:1520814. doi: 10.3389/fimmu.2025.1520814. eCollection 2025.
5
Hyperoxia-induced senescence in fetal airway smooth muscle cells: role of mitochondrial reactive oxygen species and endoplasmic reticulum stress.
Am J Physiol Lung Cell Mol Physiol. 2025 Jul 1;329(1):L1-L18. doi: 10.1152/ajplung.00348.2024. Epub 2025 Apr 4.
6
Genome wide interaction study of genetic variants associated with lung function decline.
Sci Rep. 2025 Mar 21;15(1):9824. doi: 10.1038/s41598-025-93147-6.
10
Particulate Matter-Induced Emerging Health Effects Associated with Oxidative Stress and Inflammation.
Antioxidants (Basel). 2024 Oct 17;13(10):1256. doi: 10.3390/antiox13101256.

本文引用的文献

2
Mitochondrial Dysfunction in Lung Pathogenesis.
Annu Rev Physiol. 2017 Feb 10;79:495-515. doi: 10.1146/annurev-physiol-022516-034322. Epub 2016 Dec 7.
3
Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease.
Am J Physiol Lung Cell Mol Physiol. 2016 Dec 1;311(6):L1113-L1140. doi: 10.1152/ajplung.00370.2016. Epub 2016 Oct 14.
4
Calcium at the Center of Cell Signaling: Interplay between Endoplasmic Reticulum, Mitochondria, and Lysosomes.
Trends Biochem Sci. 2016 Dec;41(12):1035-1049. doi: 10.1016/j.tibs.2016.09.001. Epub 2016 Sep 28.
5
Susceptibility for cigarette smoke-induced DAMP release and DAMP-induced inflammation in COPD.
Am J Physiol Lung Cell Mol Physiol. 2016 Nov 1;311(5):L881-L892. doi: 10.1152/ajplung.00135.2016. Epub 2016 Sep 9.
6
Extracellular Adenosine 5'-Triphosphate in Obstructive Airway Diseases.
Chest. 2016 Oct;150(4):908-915. doi: 10.1016/j.chest.2016.06.045. Epub 2016 Aug 25.
7
Functional Effects of Cigarette Smoke-Induced Changes in Airway Smooth Muscle Mitochondrial Morphology.
J Cell Physiol. 2017 May;232(5):1053-1068. doi: 10.1002/jcp.25508. Epub 2016 Sep 21.
8
Mitochondrial redox system, dynamics, and dysfunction in lung inflammaging and COPD.
Int J Biochem Cell Biol. 2016 Dec;81(Pt B):294-306. doi: 10.1016/j.biocel.2016.07.026. Epub 2016 Jul 26.
9
Differential regulation of autophagy and mitophagy in pulmonary diseases.
Am J Physiol Lung Cell Mol Physiol. 2016 Aug 1;311(2):L433-52. doi: 10.1152/ajplung.00128.2016. Epub 2016 Jul 8.
10
Mitochondria dysfunction: A novel therapeutic target in pathological lung remodeling or bystander?
Pharmacol Ther. 2016 Oct;166:96-105. doi: 10.1016/j.pharmthera.2016.06.019. Epub 2016 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验