Suppr超能文献

交替式转运体中底物转运的机制。

Mechanism of Substrate Translocation in an Alternating Access Transporter.

作者信息

Latorraca Naomi R, Fastman Nathan M, Venkatakrishnan A J, Frommer Wolf B, Dror Ron O, Feng Liang

机构信息

Biophysics Program, Stanford University, Stanford, CA 94305, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.

Biophysics Program, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Cell. 2017 Mar 23;169(1):96-107.e12. doi: 10.1016/j.cell.2017.03.010.

Abstract

Transporters shuttle molecules across cell membranes by alternating among distinct conformational states. Fundamental questions remain about how transporters transition between states and how such structural rearrangements regulate substrate translocation. Here, we capture the translocation process by crystallography and unguided molecular dynamics simulations, providing an atomic-level description of alternating access transport. Simulations of a SWEET-family transporter initiated from an outward-open, glucose-bound structure reported here spontaneously adopt occluded and inward-open conformations. Strikingly, these conformations match crystal structures, including our inward-open structure. Mutagenesis experiments further validate simulation predictions. Our results reveal that state transitions are driven by favorable interactions formed upon closure of extracellular and intracellular "gates" and by an unfavorable transmembrane helix configuration when both gates are closed. This mechanism leads to tight allosteric coupling between gates, preventing them from opening simultaneously. Interestingly, the substrate appears to take a "free ride" across the membrane without causing major structural rearrangements in the transporter.

摘要

转运蛋白通过在不同构象状态之间交替来穿梭分子穿过细胞膜。关于转运蛋白如何在不同状态之间转换以及这种结构重排如何调节底物转运,仍然存在一些基本问题。在这里,我们通过晶体学和无导向分子动力学模拟捕捉了转运过程,提供了交替式访问转运的原子水平描述。从本文报道的向外开放、结合葡萄糖的结构开始对一个SWEET家族转运蛋白进行模拟,它会自发地采用闭塞和向内开放的构象。令人惊讶的是,这些构象与晶体结构相匹配,包括我们的向内开放结构。诱变实验进一步验证了模拟预测。我们的结果表明,状态转换是由细胞外和细胞内“门”关闭时形成的有利相互作用以及当两个门都关闭时不利的跨膜螺旋构型驱动的。这种机制导致门之间紧密的变构偶联,防止它们同时打开。有趣的是,底物似乎“搭便车”穿过膜,而不会在转运蛋白中引起重大结构重排。

相似文献

1
Mechanism of Substrate Translocation in an Alternating Access Transporter.
Cell. 2017 Mar 23;169(1):96-107.e12. doi: 10.1016/j.cell.2017.03.010.
2
Structural Events in a Bacterial Uniporter Leading to Translocation of Glucose to the Cytosol.
J Mol Biol. 2018 Sep 14;430(18 Pt B):3337-3352. doi: 10.1016/j.jmb.2018.06.021. Epub 2018 Jun 18.
3
Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1.
Science. 2010 Apr 23;328(5977):470-3. doi: 10.1126/science.1186303.
4
Transient formation of water-conducting states in membrane transporters.
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7696-701. doi: 10.1073/pnas.1218986110. Epub 2013 Apr 22.
5
The mechanism of mammalian proton-coupled peptide transporters.
Elife. 2024 Jul 23;13:RP96507. doi: 10.7554/eLife.96507.
6
Reconciling contradictory findings: Glucose transporter 1 (GLUT1) functions as an oligomer of allosteric, alternating access transporters.
J Biol Chem. 2017 Dec 22;292(51):21035-21046. doi: 10.1074/jbc.M117.815589. Epub 2017 Oct 24.
7
Conformational Changes of the Antibacterial Peptide ATP Binding Cassette Transporter McjD Revealed by Molecular Dynamics Simulations.
Biochemistry. 2015 Sep 29;54(38):5989-98. doi: 10.1021/acs.biochem.5b00753. Epub 2015 Sep 17.
9
Flexible gates generate occluded intermediates in the transport cycle of LacY.
J Mol Biol. 2014 Feb 6;426(3):735-51. doi: 10.1016/j.jmb.2013.10.024.

引用本文的文献

1
Structure of human mitochondrial pyruvate carrier MPC1 and MPC2 complex.
Nat Commun. 2025 Jul 21;16(1):6700. doi: 10.1038/s41467-025-61939-z.
3
for Investigating Conformational Transitions and Environmental Interactions of Proteins.
J Chem Theory Comput. 2025 May 27;21(10):5304-5321. doi: 10.1021/acs.jctc.5c00256. Epub 2025 May 13.
4
Molecular basis of pyruvate transport and inhibition of the human mitochondrial pyruvate carrier.
Sci Adv. 2025 Apr 18;11(16):eadw1489. doi: 10.1126/sciadv.adw1489.
5
Molecular insights into substrate translocation in an elevator-type metal transporter.
Nat Commun. 2024 Nov 8;15(1):9665. doi: 10.1038/s41467-024-54048-w.
6
Molecular insights into substrate translocation in an elevator-type metal transporter.
bioRxiv. 2024 Sep 19:2024.09.18.613805. doi: 10.1101/2024.09.18.613805.
8
SWEET family transporters act as water conducting carrier proteins in plants.
bioRxiv. 2024 Jun 25:2024.06.23.600272. doi: 10.1101/2024.06.23.600272.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Stochastic steps in secondary active sugar transport.
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):E3960-6. doi: 10.1073/pnas.1525378113. Epub 2016 Jun 20.
3
Mechanistic diversity in ATP-binding cassette (ABC) transporters.
Nat Struct Mol Biol. 2016 Jun 7;23(6):487-93. doi: 10.1038/nsmb.3216.
4
Multiscale Simulations Reveal Key Aspects of the Proton Transport Mechanism in the ClC-ec1 Antiporter.
Biophys J. 2016 Mar 29;110(6):1334-45. doi: 10.1016/j.bpj.2016.02.014.
5
Shared Molecular Mechanisms of Membrane Transporters.
Annu Rev Biochem. 2016 Jun 2;85:543-72. doi: 10.1146/annurev-biochem-060815-014520. Epub 2016 Mar 21.
6
Allosteric Mechanisms of Molecular Machines at the Membrane: Transport by Sodium-Coupled Symporters.
Chem Rev. 2016 Jun 8;116(11):6552-87. doi: 10.1021/acs.chemrev.5b00627. Epub 2016 Feb 19.
7
Understanding transport by the major facilitator superfamily (MFS): structures pave the way.
Nat Rev Mol Cell Biol. 2016 Feb;17(2):123-32. doi: 10.1038/nrm.2015.25. Epub 2016 Jan 13.
8
Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald.
J Chem Theory Comput. 2013 Sep 10;9(9):3878-88. doi: 10.1021/ct400314y. Epub 2013 Aug 20.
9
PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data.
J Chem Theory Comput. 2013 Jul 9;9(7):3084-95. doi: 10.1021/ct400341p. Epub 2013 Jun 25.
10
Structure of a eukaryotic SWEET transporter in a homotrimeric complex.
Nature. 2015 Nov 12;527(7577):259-263. doi: 10.1038/nature15391. Epub 2015 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验