Latorraca Naomi R, Fastman Nathan M, Venkatakrishnan A J, Frommer Wolf B, Dror Ron O, Feng Liang
Biophysics Program, Stanford University, Stanford, CA 94305, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.
Biophysics Program, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
Cell. 2017 Mar 23;169(1):96-107.e12. doi: 10.1016/j.cell.2017.03.010.
Transporters shuttle molecules across cell membranes by alternating among distinct conformational states. Fundamental questions remain about how transporters transition between states and how such structural rearrangements regulate substrate translocation. Here, we capture the translocation process by crystallography and unguided molecular dynamics simulations, providing an atomic-level description of alternating access transport. Simulations of a SWEET-family transporter initiated from an outward-open, glucose-bound structure reported here spontaneously adopt occluded and inward-open conformations. Strikingly, these conformations match crystal structures, including our inward-open structure. Mutagenesis experiments further validate simulation predictions. Our results reveal that state transitions are driven by favorable interactions formed upon closure of extracellular and intracellular "gates" and by an unfavorable transmembrane helix configuration when both gates are closed. This mechanism leads to tight allosteric coupling between gates, preventing them from opening simultaneously. Interestingly, the substrate appears to take a "free ride" across the membrane without causing major structural rearrangements in the transporter.
转运蛋白通过在不同构象状态之间交替来穿梭分子穿过细胞膜。关于转运蛋白如何在不同状态之间转换以及这种结构重排如何调节底物转运,仍然存在一些基本问题。在这里,我们通过晶体学和无导向分子动力学模拟捕捉了转运过程,提供了交替式访问转运的原子水平描述。从本文报道的向外开放、结合葡萄糖的结构开始对一个SWEET家族转运蛋白进行模拟,它会自发地采用闭塞和向内开放的构象。令人惊讶的是,这些构象与晶体结构相匹配,包括我们的向内开放结构。诱变实验进一步验证了模拟预测。我们的结果表明,状态转换是由细胞外和细胞内“门”关闭时形成的有利相互作用以及当两个门都关闭时不利的跨膜螺旋构型驱动的。这种机制导致门之间紧密的变构偶联,防止它们同时打开。有趣的是,底物似乎“搭便车”穿过膜,而不会在转运蛋白中引起重大结构重排。