Suppr超能文献

多光谱光镊用于 CD9 阳性外泌体亚群的生化指纹分析。

Multispectral Optical Tweezers for Biochemical Fingerprinting of CD9-Positive Exosome Subpopulations.

机构信息

Department of Biochemistry and Molecular Medicine, University of California Davis , Sacramento, California 95817, United States.

Department of Surgery, University of Washington , 850 Republican Street, Seattle, Washington 98195-0005, United States.

出版信息

Anal Chem. 2017 May 16;89(10):5357-5363. doi: 10.1021/acs.analchem.7b00017. Epub 2017 Apr 25.

Abstract

Extracellular vesicles (EVs), including exosomes, are circulating nanoscale particles heavily implicated in cell signaling and can be isolated in vast numbers from human biofluids. Study of their molecular profiling and materials properties is currently underway for purposes of describing a variety of biological functions and diseases. However, the large, and as yet largely unquantified, variety of EV subpopulations differing in composition, size, and likely function necessitates characterization schemes capable of measuring single vesicles. Here we describe the first application of multispectral optical tweezers (MS-OTs) to single vesicles for molecular fingerprinting of EV subpopulations. This versatile imaging platform allows for sensitive measurement of Raman chemical composition (e.g., variation in protein, lipid, cholesterol, nucleic acids), coupled with discrimination by fluorescence markers. For exosomes isolated by ultracentrifugation, we use MS-OTs to interrogate the CD9-positive subpopulations via antibody fluorescence labeling and Raman spectra measurement. We report that the CD9-positive exosome subset exhibits reduced component concentration per vesicle and reduced chemical heterogeneity compared to the total purified EV population. We observed that specific vesicle subpopulations are present across exosomes isolated from cell culture supernatant of several clonal varieties of mesenchymal stromal cells and also from plasma and ascites isolated from human ovarian cancer patients.

摘要

细胞外囊泡(EVs),包括外泌体,是循环的纳米级颗粒,在细胞信号转导中起着重要作用,可以从人体生物流体中大量分离出来。目前正在对其分子谱和材料特性进行研究,目的是描述各种生物学功能和疾病。然而,大量的、尚未完全量化的 EV 亚群在组成、大小和可能的功能上存在差异,这就需要能够测量单个囊泡的表征方案。在这里,我们描述了多光谱光镊(MS-OT)首次应用于单个囊泡,以对 EV 亚群进行分子指纹图谱分析。这种多功能的成像平台允许对拉曼化学成分进行敏感测量(例如,蛋白质、脂质、胆固醇、核酸的变化),并结合荧光标记物进行区分。对于通过超速离心分离的外泌体,我们使用 MS-OT 通过抗体荧光标记和拉曼光谱测量来检测 CD9 阳性亚群。我们报告说,与总纯化 EV 群体相比,CD9 阳性外泌体亚群的每个囊泡的组分浓度降低,化学异质性降低。我们观察到,在从几种间充质基质细胞克隆品种的细胞培养上清液以及从人类卵巢癌患者的血浆和腹水中分离的外泌体中,存在特定的囊泡亚群。

相似文献

1
Multispectral Optical Tweezers for Biochemical Fingerprinting of CD9-Positive Exosome Subpopulations.
Anal Chem. 2017 May 16;89(10):5357-5363. doi: 10.1021/acs.analchem.7b00017. Epub 2017 Apr 25.
2
Nanoscale flow cytometry to distinguish subpopulations of prostate extracellular vesicles in patient plasma.
Prostate. 2019 May;79(6):592-603. doi: 10.1002/pros.23764. Epub 2019 Jan 24.
3
Protease Cargo in Circulating Exosomes of Breast Cancer and Ovarian Cancer Patients.
Asian Pac J Cancer Prev. 2019 Jan 25;20(1):255-262. doi: 10.31557/APJCP.2019.20.1.255.
4
PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles.
Biochim Biophys Acta Biomembr. 2018 Jun;1860(6):1350-1361. doi: 10.1016/j.bbamem.2018.03.013. Epub 2018 Mar 16.
6
Raman tweezers microspectroscopy of circa 100 nm extracellular vesicles.
Nanoscale. 2019 Jan 23;11(4):1661-1679. doi: 10.1039/c8nr04677h.
7
Expression of B-cell surface antigens in subpopulations of exosomes released from B-cell lymphoma cells.
Clin Ther. 2014 Jun 1;36(6):847-862.e1. doi: 10.1016/j.clinthera.2014.05.010.
8
Mesenchymal Stem Cell-Derived Exosomes Promote Fracture Healing in a Mouse Model.
Stem Cells Transl Med. 2016 Dec;5(12):1620-1630. doi: 10.5966/sctm.2015-0285. Epub 2016 Jul 26.
10
The Impact of the CD9 Tetraspanin on Lentivirus Infectivity and Exosome Secretion.
Mol Ther. 2018 Feb 7;26(2):634-647. doi: 10.1016/j.ymthe.2017.11.008. Epub 2017 Nov 16.

引用本文的文献

1
On the dilemma of using single EV analysis for liquid biopsy: the challenge of low abundance of tumor EVs in blood.
Theranostics. 2025 Jul 24;15(16):8031-8048. doi: 10.7150/thno.115131. eCollection 2025.
2
Monitoring Populations of Single Extracellular Vesicles from Using Large Parallel Arrays of Zero-Mode Waveguides.
Precis Chem. 2025 Mar 28;3(6):348-356. doi: 10.1021/prechem.5c00012. eCollection 2025 Jun 23.
3
Interaction vesicles as emerging mediators of host-pathogen molecular crosstalk and their implications for infection dynamics.
FEBS Lett. 2025 Sep;599(17):2439-2448. doi: 10.1002/1873-3468.70055. Epub 2025 May 1.
4
AI in SERS sensing moving from discriminative to generative.
NPJ Biosens. 2025;2(1):9. doi: 10.1038/s44328-025-00033-2. Epub 2025 Feb 21.
5
Engineered Extracellular Vesicles as a New Class of Nanomedicine.
Chem Bio Eng. 2024 Oct 28;2(1):3-22. doi: 10.1021/cbe.4c00122. eCollection 2025 Jan 23.
6
Characterization of lipid-based nanomedicines at the single-particle level.
Fundam Res. 2022 Oct 3;3(4):488-504. doi: 10.1016/j.fmre.2022.09.011. eCollection 2023 Jul.
7
Nanoplasmonic sensors for extracellular vesicles and bacterial membrane vesicles.
Nano Converg. 2024 Jun 25;11(1):23. doi: 10.1186/s40580-024-00431-8.
8
Extracellular Vesicle Preparation and Analysis: A State-of-the-Art Review.
Adv Sci (Weinh). 2024 Aug;11(30):e2401069. doi: 10.1002/advs.202401069. Epub 2024 Jun 14.
9
A Raman spectral marker for the iso-octyl chain structure of cholesterol.
Anal Sci Adv. 2023 Dec 4;5(1-2):2300057. doi: 10.1002/ansa.202300057. eCollection 2024 Feb.
10
Unlocking the Potential of Extracellular Vesicles as the Next Generation Therapy: Challenges and Opportunities.
Tissue Eng Regen Med. 2024 Jun;21(4):513-527. doi: 10.1007/s13770-024-00634-4. Epub 2024 Apr 10.

本文引用的文献

1
Methods for the physical characterization and quantification of extracellular vesicles in biological samples.
Biochim Biophys Acta Gen Subj. 2017 Jan;1861(1 Pt A):3164-3179. doi: 10.1016/j.bbagen.2016.07.028. Epub 2016 Aug 3.
3
Pretreatment with bone marrow-derived mesenchymal stromal cell-conditioned media confers pulmonary ischemic tolerance.
J Thorac Cardiovasc Surg. 2016 Mar;151(3):841-849. doi: 10.1016/j.jtcvs.2015.11.043. Epub 2015 Nov 30.
4
Focus on Extracellular Vesicles: New Frontiers of Cell-to-Cell Communication in Cancer.
Int J Mol Sci. 2016 Feb 6;17(2):175. doi: 10.3390/ijms17020175.
5
Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes.
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E968-77. doi: 10.1073/pnas.1521230113. Epub 2016 Feb 8.
6
Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content.
J Extracell Vesicles. 2015 Dec 7;4:28533. doi: 10.3402/jev.v4.28533. eCollection 2015.
7
Biogenesis, delivery, and function of extracellular RNA.
J Extracell Vesicles. 2015 Aug 28;4:27494. doi: 10.3402/jev.v4.27494. eCollection 2015.
8
Optimized exosome isolation protocol for cell culture supernatant and human plasma.
J Extracell Vesicles. 2015 Jul 17;4:27031. doi: 10.3402/jev.v4.27031. eCollection 2015.
9
Mesenchymal stem cell exosomes.
Semin Cell Dev Biol. 2015 Apr;40:82-8. doi: 10.1016/j.semcdb.2015.03.001. Epub 2015 Mar 9.
10
Ectosomes and exosomes: shedding the confusion between extracellular vesicles.
Trends Cell Biol. 2015 Jun;25(6):364-72. doi: 10.1016/j.tcb.2015.01.004. Epub 2015 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验