Suppr超能文献

上皮形态发生的机械细胞模型。

Mechanocellular models of epithelial morphogenesis.

作者信息

Fletcher Alexander G, Cooper Fergus, Baker Ruth E

机构信息

School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK

Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2017 May 19;372(1720). doi: 10.1098/rstb.2015.0519.

Abstract

Embryonic epithelia achieve complex morphogenetic movements, including in-plane reshaping, bending and folding, through the coordinated action and rearrangement of individual cells. Technical advances in molecular and live-imaging studies of epithelial dynamics provide a very real opportunity to understand how cell-level processes facilitate these large-scale tissue rearrangements. However, the large datasets that we are now able to generate require careful interpretation. In combination with experimental approaches, computational modelling allows us to challenge and refine our current understanding of epithelial morphogenesis and to explore experimentally intractable questions. To this end, a variety of cell-based modelling approaches have been developed to describe cell-cell mechanical interactions, ranging from vertex and 'finite-element' models that approximate each cell geometrically by a polygon representing the cell's membrane, to immersed boundary and subcellular element models that allow for more arbitrary cell shapes. Here, we review how these models have been used to provide insights into epithelial morphogenesis and describe how such models could help future efforts to decipher the forces and mechanical and biochemical feedbacks that guide cell and tissue-level behaviour. In addition, we discuss current challenges associated with using computational models of morphogenetic processes in a quantitative and predictive way.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'.

摘要

胚胎上皮通过单个细胞的协同作用和重排实现复杂的形态发生运动,包括平面内重塑、弯曲和折叠。上皮动力学的分子和实时成像研究方面的技术进步为理解细胞水平的过程如何促进这些大规模组织重排提供了切实的机会。然而,我们现在能够生成的大量数据集需要仔细解读。结合实验方法,计算建模使我们能够质疑和完善我们目前对上皮形态发生的理解,并探索实验上难以处理的问题。为此,已经开发了多种基于细胞的建模方法来描述细胞间的机械相互作用,从通过代表细胞膜的多边形对每个细胞进行几何近似的顶点模型和“有限元”模型,到允许细胞形状更任意的浸入边界模型和亚细胞元件模型。在这里,我们回顾这些模型是如何被用于深入了解上皮形态发生的,并描述这些模型如何有助于未来努力破译引导细胞和组织水平行为的力以及机械和生化反馈。此外,我们讨论了以定量和预测方式使用形态发生过程计算模型所面临的当前挑战。本文是主题为“系统形态动力学:理解组织硬件的发育”的特刊的一部分。

相似文献

1
Mechanocellular models of epithelial morphogenesis.
Philos Trans R Soc Lond B Biol Sci. 2017 May 19;372(1720). doi: 10.1098/rstb.2015.0519.
2
Computational analysis of three-dimensional epithelial morphogenesis using vertex models.
Phys Biol. 2014 Nov 20;11(6):066007. doi: 10.1088/1478-3975/11/6/066007.
3
Complex structures from patterned cell sheets.
Philos Trans R Soc Lond B Biol Sci. 2017 May 19;372(1720). doi: 10.1098/rstb.2015.0515.
4
Taking the strain: quantifying the contributions of all cell behaviours to changes in epithelial shape.
Philos Trans R Soc Lond B Biol Sci. 2017 May 19;372(1720). doi: 10.1098/rstb.2015.0513.
5
Vertex models: from cell mechanics to tissue morphogenesis.
Philos Trans R Soc Lond B Biol Sci. 2017 May 19;372(1720). doi: 10.1098/rstb.2015.0520.
6
Cellular systems for epithelial invagination.
Philos Trans R Soc Lond B Biol Sci. 2017 May 19;372(1720). doi: 10.1098/rstb.2015.0526.
7
Vertex dynamics simulations of viscosity-dependent deformation during tissue morphogenesis.
Biomech Model Mechanobiol. 2015 Apr;14(2):413-25. doi: 10.1007/s10237-014-0613-5. Epub 2014 Sep 17.
9
Quantitative modelling of epithelial morphogenesis: integrating cell mechanics and molecular dynamics.
Semin Cell Dev Biol. 2017 Jul;67:153-160. doi: 10.1016/j.semcdb.2016.07.030. Epub 2016 Jul 29.
10
Regulation of tissue morphodynamics: an important role for actomyosin contractility.
Curr Opin Genet Dev. 2015 Jun;32:80-5. doi: 10.1016/j.gde.2015.01.002. Epub 2015 Mar 3.

引用本文的文献

1
Predicting organoid morphology through a phase field model: Insights into cell division and lumenal pressure.
PLoS Comput Biol. 2025 Aug 18;21(8):e1012090. doi: 10.1371/journal.pcbi.1012090. eCollection 2025 Aug.
2
Advances in mechanochemical modelling of vertebrate gastrulation.
Biochem Soc Trans. 2025 Jul 22. doi: 10.1042/BST20240469.
3
Studying gastrulation by invagination: The bending of a cell sheet by mechanical cell properties using 3D deformable cell based simulations.
PLoS Comput Biol. 2025 Jun 25;21(6):e1013151. doi: 10.1371/journal.pcbi.1013151. eCollection 2025 Jun.
4
Control of tissue flows and embryo geometry in avian gastrulation.
Nat Commun. 2025 Jun 4;16(1):5174. doi: 10.1038/s41467-025-60249-8.
5
Neighbor cells restrain furrowing during Xenopus epithelial cytokinesis.
Dev Cell. 2025 Apr 8. doi: 10.1016/j.devcel.2025.03.010.
6
Assessing mechanical agency during apical apoptotic cell extrusion.
iScience. 2024 Sep 23;27(11):111017. doi: 10.1016/j.isci.2024.111017. eCollection 2024 Nov 15.
7
Regulation of epithelial cell jamming transition by cytoskeleton and cell-cell interactions.
Biophys Rev (Melville). 2024 Oct 14;5(4):041301. doi: 10.1063/5.0220088. eCollection 2024 Dec.
9
Control of Modular Tissue Flows Shaping the Embryo in Avian Gastrulation.
bioRxiv. 2024 Jul 8:2024.07.04.601785. doi: 10.1101/2024.07.04.601785.
10
Piezo regulates epithelial topology and promotes precision in organ size control.
Cell Rep. 2024 Jul 23;43(7):114398. doi: 10.1016/j.celrep.2024.114398. Epub 2024 Jun 26.

本文引用的文献

2
Invagination of Ectodermal Placodes Is Driven by Cell Intercalation-Mediated Contraction of the Suprabasal Tissue Canopy.
PLoS Biol. 2016 Mar 9;14(3):e1002405. doi: 10.1371/journal.pbio.1002405. eCollection 2016 Mar.
3
Measuring forces and stresses in situ in living tissues.
Development. 2016 Jan 15;143(2):186-96. doi: 10.1242/dev.119776.
4
Capabilities and Limitations of Tissue Size Control through Passive Mechanical Forces.
PLoS Comput Biol. 2015 Dec 29;11(12):e1004679. doi: 10.1371/journal.pcbi.1004679. eCollection 2015 Dec.
5
Mechano-logical model of C. elegans germ line suggests feedback on the cell cycle.
Development. 2015 Nov 15;142(22):3902-11. doi: 10.1242/dev.126359. Epub 2015 Oct 1.
6
A biomechanical model for cell polarization and intercalation during Drosophila germband extension.
Phys Biol. 2015 Sep 10;12(5):056011. doi: 10.1088/1478-3975/12/5/056011.
7
Computational modeling of development by epithelia, mesenchyme and their interactions: a unified model.
Bioinformatics. 2016 Jan 15;32(2):219-25. doi: 10.1093/bioinformatics/btv527. Epub 2015 Sep 5.
8
How computational models can help unlock biological systems.
Semin Cell Dev Biol. 2015 Dec;47-48:62-73. doi: 10.1016/j.semcdb.2015.07.001. Epub 2015 Jul 9.
9
Non-straight cell edges are important to invasion and engulfment as demonstrated by cell mechanics model.
Biomech Model Mechanobiol. 2016 Apr;15(2):405-18. doi: 10.1007/s10237-015-0697-6. Epub 2015 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验