Suppr超能文献

基于分子印迹二氧化硅包覆的碲化镉量子点快速检测鱼类中的孔雀石绿

Rapid detection of malachite green in fish based on CdTe quantum dots coated with molecularly imprinted silica.

作者信息

Wu Le, Lin Zheng-Zhong, Zhong Hui-Ping, Peng Ai-Hong, Chen Xiao-Mei, Huang Zhi-Yong

机构信息

College of Food and Biological Engineering, Jimei University, Xiamen 361021, China.

College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361102, China.

出版信息

Food Chem. 2017 Aug 15;229:847-853. doi: 10.1016/j.foodchem.2017.02.144. Epub 2017 Mar 1.

Abstract

A sensitive fluorescence sensor for the detection of malachite green (MG) was fabricated by grafting molecularly imprinted polymers (MIPs) onto the surface of CdTe quantum dots (QDs). The MIP-coated QDs were synthesized via a reverse microemulsion method using (3-aminopropyl)triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) as functional monomer and cross-linker, respectively. The optimum molar ratio of MG, functional monomer and cross-linker was 1:3:10. The MIP-coated QDs exhibited uniform spheres with diameter around 49nm and excellent fluorescence emission at λ 370nm. A linear relationship with two segments between the relative fluorescence intensities and the MG concentrations ranging from 0.08 to 20μmol·L could be obtained with a detection limit of 12μg·kg. The fluorescent probe was successfully applied to the determination of MG in fish samples with the spiked recoveries ranging from 94.3% to 109.5% which were in accordance with those of the measurement by HPLC-UV.

摘要

通过将分子印迹聚合物(MIPs)接枝到碲化镉量子点(QDs)表面,制备了一种用于检测孔雀石绿(MG)的灵敏荧光传感器。采用反相微乳液法,分别以(3-氨丙基)三乙氧基硅烷(APTES)和正硅酸四乙酯(TEOS)作为功能单体和交联剂,合成了包覆MIP的量子点。MG、功能单体和交联剂的最佳摩尔比为1:3:10。包覆MIP的量子点呈现出直径约为49nm的均匀球体,在λ 370nm处具有优异的荧光发射。在相对荧光强度与0.08至20μmol·L的MG浓度之间可获得两段线性关系,检测限为12μg·kg。该荧光探针成功应用于鱼类样品中MG的测定,加标回收率在94.3%至109.5%之间,与高效液相色谱-紫外检测法的测定结果一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验