Suppr超能文献

增强胰腺肿瘤免疫原性的策略。

Strategies for Increasing Pancreatic Tumor Immunogenicity.

作者信息

Johnson Burles A, Yarchoan Mark, Lee Valerie, Laheru Daniel A, Jaffee Elizabeth M

机构信息

Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland.

Department of Pathology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland.

出版信息

Clin Cancer Res. 2017 Apr 1;23(7):1656-1669. doi: 10.1158/1078-0432.CCR-16-2318.

Abstract

Immunotherapy has changed the standard of care for multiple deadly cancers, including lung, head and neck, gastric, and some colorectal cancers. However, single-agent immunotherapy has had little effect in pancreatic ductal adenocarcinoma (PDAC). Increasing evidence suggests that the PDAC microenvironment is comprised of an intricate network of signals between immune cells, PDAC cells, and stroma, resulting in an immunosuppressive environment resistant to single-agent immunotherapies. In this review, we discuss differences between immunotherapy-sensitive cancers and PDAC, the complex interactions between PDAC stroma and suppressive tumor-infiltrating cells that facilitate PDAC development and progression, the immunologic targets within these complex networks that are druggable, and data supporting combination drug approaches that modulate multiple PDAC signals, which should lead to improved clinical outcomes.

摘要

免疫疗法已经改变了包括肺癌、头颈癌、胃癌和一些结直肠癌在内的多种致命癌症的治疗标准。然而,单药免疫疗法对胰腺导管腺癌(PDAC)几乎没有效果。越来越多的证据表明,PDAC微环境由免疫细胞、PDAC细胞和基质之间复杂的信号网络组成,导致产生对单药免疫疗法有抗性的免疫抑制环境。在这篇综述中,我们讨论了免疫疗法敏感癌症与PDAC之间的差异、PDAC基质与促进PDAC发展和进展的抑制性肿瘤浸润细胞之间的复杂相互作用、这些复杂网络中可成药的免疫靶点,以及支持调节多种PDAC信号的联合药物方法的数据,这些方法应能改善临床结果。

相似文献

1
Strategies for Increasing Pancreatic Tumor Immunogenicity.
Clin Cancer Res. 2017 Apr 1;23(7):1656-1669. doi: 10.1158/1078-0432.CCR-16-2318.
2
Current and Emerging Therapies in Metastatic Pancreatic Cancer.
Clin Cancer Res. 2017 Apr 1;23(7):1670-1678. doi: 10.1158/1078-0432.CCR-16-2319.
3
Current advances and outlooks in immunotherapy for pancreatic ductal adenocarcinoma.
Mol Cancer. 2020 Feb 15;19(1):32. doi: 10.1186/s12943-020-01151-3.
4
Targeting the tumor microenvironment for pancreatic ductal adenocarcinoma therapy.
Chin Clin Oncol. 2019 Apr;8(2):18. doi: 10.21037/cco.2019.03.02.
5
Pancreatic stellate cells and pancreas cancer: current perspectives and future strategies.
Eur J Cancer. 2014 Oct;50(15):2570-82. doi: 10.1016/j.ejca.2014.06.021. Epub 2014 Aug 1.
7
The Paradoxical Web of Pancreatic Cancer Tumor Microenvironment.
Am J Pathol. 2019 Jan;189(1):44-57. doi: 10.1016/j.ajpath.2018.09.009.
8
The Immune Microenvironment in Pancreatic Cancer.
Int J Mol Sci. 2020 Oct 3;21(19):7307. doi: 10.3390/ijms21197307.
10
Pancreatic Cancer: "A Riddle Wrapped in a Mystery inside an Enigma".
Clin Cancer Res. 2017 Apr 1;23(7):1629-1637. doi: 10.1158/1078-0432.CCR-16-2070.

引用本文的文献

1
Novel Insights into T-Cell Exhaustion and Cancer Biomarkers in PDAC Using ScRNA-Seq.
Biology (Basel). 2025 Aug 7;14(8):1015. doi: 10.3390/biology14081015.
2
The immune-related prognostic gene AIM2 promotes pancreatic cancer progression via inflammasome.
Sci Rep. 2025 Aug 13;15(1):29733. doi: 10.1038/s41598-025-12651-x.
4
Pancreatic Cancer: Pathogenesis and Clinical Studies.
MedComm (2020). 2025 Apr 2;6(4):e70162. doi: 10.1002/mco2.70162. eCollection 2025 Apr.
7
Targeting protein modification: a new direction for immunotherapy of pancreatic cancer.
Int J Biol Sci. 2025 Jan 1;21(1):63-74. doi: 10.7150/ijbs.101861. eCollection 2025.
8
MCRS1 sensitizes T cell-dependent immunotherapy by augmenting MHC-I expression in solid tumors.
J Exp Med. 2024 Dec 2;221(12). doi: 10.1084/jem.20240959. Epub 2024 Nov 15.
9
Clinical outcomes of second-line chemotherapy in patients with advanced pancreatic adenocarcinoma: a real-world study.
Cancer Biol Med. 2024 Jul 26;21(9):799-812. doi: 10.20892/j.issn.2095-3941.2024.0036.
10
Interleukin-1α as a Potential Prognostic Biomarker in Pancreatic Cancer.
Biomedicines. 2024 May 30;12(6):1216. doi: 10.3390/biomedicines12061216.

本文引用的文献

1
Current and Emerging Therapies in Metastatic Pancreatic Cancer.
Clin Cancer Res. 2017 Apr 1;23(7):1670-1678. doi: 10.1158/1078-0432.CCR-16-2319.
2
Re-engineering the Pancreas Tumor Microenvironment: A "Regenerative Program" Hacked.
Clin Cancer Res. 2017 Apr 1;23(7):1647-1655. doi: 10.1158/1078-0432.CCR-16-3275.
3
Pancreatic Cancer Genomes: Implications for Clinical Management and Therapeutic Development.
Clin Cancer Res. 2017 Apr 1;23(7):1638-1646. doi: 10.1158/1078-0432.CCR-16-2411.
4
T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer.
N Engl J Med. 2016 Dec 8;375(23):2255-2262. doi: 10.1056/NEJMoa1609279.
5
IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer.
Gut. 2018 Feb;67(2):320-332. doi: 10.1136/gutjnl-2016-311585. Epub 2016 Oct 21.
6
Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study.
Gut. 2018 Jan;67(1):120-127. doi: 10.1136/gutjnl-2016-312580. Epub 2016 Oct 14.
8
Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer.
N Engl J Med. 2016 Nov 10;375(19):1823-1833. doi: 10.1056/NEJMoa1606774. Epub 2016 Oct 8.
10
Emerging role of bacteria in oral carcinogenesis: a review with special reference to perio-pathogenic bacteria.
J Oral Microbiol. 2016 Sep 26;8:32762. doi: 10.3402/jom.v8.32762. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验