Suppr超能文献

双荧光素酶和近红外荧光监测评估体内球形核酸纳米复合物的活性。

Dual bioluminescence and near-infrared fluorescence monitoring to evaluate spherical nucleic acid nanoconjugate activity in vivo.

机构信息

Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611.

International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208.

出版信息

Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):4129-4134. doi: 10.1073/pnas.1702736114. Epub 2017 Apr 3.

Abstract

RNA interference (RNAi)-based gene regulation platforms have shown promise as a novel class of therapeutics for the precision treatment of cancer. Techniques in preclinical evaluation of RNAi-based nanoconjugates have yet to allow for optimization of their gene regulatory activity. We have developed spherical nucleic acids (SNAs) as a blood-brain barrier-/blood-tumor barrier-penetrating nanoconjugate to deliver small interfering (si) and micro (mi)RNAs to intracranial glioblastoma (GBM) tumor sites. To identify high-activity SNA conjugates and to determine optimal SNA treatment regimens, we developed a reporter xenograft model to evaluate SNA efficacy in vivo. Engrafted tumors stably coexpress optical reporters for luciferase and a near-infrared (NIR) fluorescent protein (iRFP670), with the latter fused to the DNA repair protein O-methylguanine-DNA-methyltransferase (MGMT). Using noninvasive imaging of animal subjects bearing reporter-modified intracranial xenografts, we quantitatively assessed MGMT knockdown by SNAs composed of MGMT-targeting siRNA duplexes (siMGMT-SNAs). We show that systemic administration of siMGMT-SNAs via single tail vein injection is capable of robust intratumoral MGMT protein knockdown in vivo, with persistent and SNA dose-dependent MGMT silencing confirmed by Western blotting of tumor tissue ex vivo. Analyses of SNA biodistribution and pharmacokinetics revealed rapid intratumoral uptake and significant intratumoral retention that increased the antitumor activity of coadministered temozolomide (TMZ). Our study demonstrates that dual noninvasive bioluminescence and NIR fluorescence imaging of cancer xenograft models represents a powerful in vivo strategy to identify RNAi-based nanotherapeutics with potent gene silencing activity and will inform additional preclinical and clinical investigations of these constructs.

摘要

RNA 干扰 (RNAi)- 为基础的基因调控平台已显示出作为一种新型治疗癌症的精准治疗方法的潜力。用于 RNAi 纳米缀合物的临床前评估的技术尚未允许优化其基因调节活性。我们开发了球形核酸 (SNA) 作为血脑屏障/血肿瘤屏障穿透纳米缀合物,将小干扰 (si) 和 micro (mi)RNA 递送至颅内神经胶质瘤 (GBM) 肿瘤部位。为了鉴定高活性的 SNA 缀合物并确定最佳的 SNA 治疗方案,我们开发了一种报告基因异种移植模型来评估 SNA 在体内的疗效。移植瘤稳定共表达用于荧光素酶和近红外 (NIR) 荧光蛋白 (iRFP670) 的光学报告基因,后者融合到 DNA 修复蛋白 O-甲基鸟嘌呤-DNA-甲基转移酶 (MGMT) 中。使用携带报告基因修饰的颅内异种移植动物模型的非侵入性成像,我们定量评估了由靶向 MGMT 的 siRNA 双链体 (siMGMT-SNAs) 组成的 SNA 对 MGMT 敲低的作用。我们表明,通过单次尾静脉注射系统给药的 siMGMT-SNAs 能够在体内实现强大的肿瘤内 MGMT 蛋白敲低,并且通过对肿瘤组织的 Western 印迹分析证实了持续的 SNA 剂量依赖性 MGMT 沉默。对 SNA 体内分布和药代动力学的分析表明,快速的肿瘤内摄取和显著的肿瘤内保留增加了联合给予替莫唑胺 (TMZ) 的抗肿瘤活性。我们的研究表明,癌症异种移植模型的双非侵入性生物发光和 NIR 荧光成像代表了一种强大的体内策略,用于鉴定具有强大基因沉默活性的基于 RNAi 的纳米疗法,并将为这些构建体的进一步临床前和临床研究提供信息。

相似文献

1
Dual bioluminescence and near-infrared fluorescence monitoring to evaluate spherical nucleic acid nanoconjugate activity in vivo.
Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):4129-4134. doi: 10.1073/pnas.1702736114. Epub 2017 Apr 3.
2
Inhibition of GSH synthesis potentiates temozolomide-induced bystander effect in glioblastoma.
Cancer Lett. 2013 Apr 30;331(1):68-75. doi: 10.1016/j.canlet.2012.12.005. Epub 2012 Dec 12.
3
Optimizing glioblastoma temozolomide chemotherapy employing lentiviral-based anti-MGMT shRNA technology.
Mol Ther. 2013 Mar;21(3):570-9. doi: 10.1038/mt.2012.278. Epub 2013 Jan 15.
5
Riluzole enhances the antitumor effects of temozolomide via suppression of MGMT expression in glioblastoma.
J Neurosurg. 2020 Mar 13;134(3):701-710. doi: 10.3171/2019.12.JNS192682. Print 2021 Mar 1.
6
Efficacy of protracted temozolomide dosing is limited in MGMT unmethylated GBM xenograft models.
Neuro Oncol. 2013 Jun;15(6):735-46. doi: 10.1093/neuonc/not010. Epub 2013 Mar 10.
8
Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts.
Neuro Oncol. 2009 Jun;11(3):281-91. doi: 10.1215/15228517-2008-090. Epub 2008 Oct 24.

引用本文的文献

1
Functional Nucleic-Acid-Decorated Spherical Nanoparticles: Preparation Strategies and Current Applications in Cancer Therapy.
Small Sci. 2021 Feb 9;1(3):2000056. doi: 10.1002/smsc.202000056. eCollection 2021 Mar.
2
Chondroitin Sulfate-Coated Heteroduplex-Molecular Spherical Nucleic Acids.
Chembiochem. 2025 Mar 15;26(6):e202400908. doi: 10.1002/cbic.202400908. Epub 2024 Nov 28.
3
Biomedical Approach of Nanotechnology and Biological Risks: A Mini-Review.
Int J Mol Sci. 2023 Nov 24;24(23):16719. doi: 10.3390/ijms242316719.
4
Enhancing Endosomal Escape and Gene Regulation Activity for Spherical Nucleic Acids.
Small. 2024 Mar;20(11):e2306902. doi: 10.1002/smll.202306902. Epub 2023 Nov 6.
5
Imaging of [60]Fullerene-Based Molecular Spherical Nucleic Acids by Positron Emission Tomography.
Mol Pharm. 2023 Oct 2;20(10):5043-5051. doi: 10.1021/acs.molpharmaceut.3c00370. Epub 2023 Aug 2.
6
In Vivo Behavior of Ultrasmall Spherical Nucleic Acids.
Small. 2023 Jun;19(24):e2300097. doi: 10.1002/smll.202300097. Epub 2023 Mar 11.
7
Nucleic acid drug vectors for diagnosis and treatment of brain diseases.
Signal Transduct Target Ther. 2023 Jan 17;8(1):39. doi: 10.1038/s41392-022-01298-z.
9
Recent Trends and Developments in Multifunctional Nanoparticles for Cancer Theranostics.
Molecules. 2022 Dec 7;27(24):8659. doi: 10.3390/molecules27248659.
10
Clinical advances of RNA therapeutics for treatment of neurological and neuromuscular diseases.
RNA Biol. 2022;19(1):594-608. doi: 10.1080/15476286.2022.2066334. Epub 2021 Dec 31.

本文引用的文献

2
Ribozyme-Spherical Nucleic Acids.
J Am Chem Soc. 2015 Aug 26;137(33):10528-10531. doi: 10.1021/jacs.5b07104. Epub 2015 Aug 14.
3
Cancer nanotherapeutics in clinical trials.
Cancer Treat Res. 2015;166:293-322. doi: 10.1007/978-3-319-16555-4_13.
4
miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma.
Genes Dev. 2015 Apr 1;29(7):732-45. doi: 10.1101/gad.257394.114.
5
Multiparametric flow cytometry using near-infrared fluorescent proteins engineered from bacterial phytochromes.
PLoS One. 2015 Mar 26;10(3):e0122342. doi: 10.1371/journal.pone.0122342. eCollection 2015.
6
Deep-tissue reporter-gene imaging with fluorescence and optoacoustic tomography: a performance overview.
Mol Imaging Biol. 2014 Oct;16(5):652-60. doi: 10.1007/s11307-014-0728-1.
7
Spherical nucleic acids for precision medicine.
Oncotarget. 2014 Jan 15;5(1):9-10. doi: 10.18632/oncotarget.1757.
8
Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma.
Sci Transl Med. 2013 Oct 30;5(209):209ra152. doi: 10.1126/scitranslmed.3006839.
9
Multiparametric approach for the evaluation of lipid nanoparticles for siRNA delivery.
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):12881-6. doi: 10.1073/pnas.1306529110. Epub 2013 Jul 23.
10
Near-infrared fluorescent proteins for multicolor in vivo imaging.
Nat Methods. 2013 Aug;10(8):751-4. doi: 10.1038/nmeth.2521. Epub 2013 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验