Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611.
International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208.
Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):4129-4134. doi: 10.1073/pnas.1702736114. Epub 2017 Apr 3.
RNA interference (RNAi)-based gene regulation platforms have shown promise as a novel class of therapeutics for the precision treatment of cancer. Techniques in preclinical evaluation of RNAi-based nanoconjugates have yet to allow for optimization of their gene regulatory activity. We have developed spherical nucleic acids (SNAs) as a blood-brain barrier-/blood-tumor barrier-penetrating nanoconjugate to deliver small interfering (si) and micro (mi)RNAs to intracranial glioblastoma (GBM) tumor sites. To identify high-activity SNA conjugates and to determine optimal SNA treatment regimens, we developed a reporter xenograft model to evaluate SNA efficacy in vivo. Engrafted tumors stably coexpress optical reporters for luciferase and a near-infrared (NIR) fluorescent protein (iRFP670), with the latter fused to the DNA repair protein O-methylguanine-DNA-methyltransferase (MGMT). Using noninvasive imaging of animal subjects bearing reporter-modified intracranial xenografts, we quantitatively assessed MGMT knockdown by SNAs composed of MGMT-targeting siRNA duplexes (siMGMT-SNAs). We show that systemic administration of siMGMT-SNAs via single tail vein injection is capable of robust intratumoral MGMT protein knockdown in vivo, with persistent and SNA dose-dependent MGMT silencing confirmed by Western blotting of tumor tissue ex vivo. Analyses of SNA biodistribution and pharmacokinetics revealed rapid intratumoral uptake and significant intratumoral retention that increased the antitumor activity of coadministered temozolomide (TMZ). Our study demonstrates that dual noninvasive bioluminescence and NIR fluorescence imaging of cancer xenograft models represents a powerful in vivo strategy to identify RNAi-based nanotherapeutics with potent gene silencing activity and will inform additional preclinical and clinical investigations of these constructs.
RNA 干扰 (RNAi)- 为基础的基因调控平台已显示出作为一种新型治疗癌症的精准治疗方法的潜力。用于 RNAi 纳米缀合物的临床前评估的技术尚未允许优化其基因调节活性。我们开发了球形核酸 (SNA) 作为血脑屏障/血肿瘤屏障穿透纳米缀合物,将小干扰 (si) 和 micro (mi)RNA 递送至颅内神经胶质瘤 (GBM) 肿瘤部位。为了鉴定高活性的 SNA 缀合物并确定最佳的 SNA 治疗方案,我们开发了一种报告基因异种移植模型来评估 SNA 在体内的疗效。移植瘤稳定共表达用于荧光素酶和近红外 (NIR) 荧光蛋白 (iRFP670) 的光学报告基因,后者融合到 DNA 修复蛋白 O-甲基鸟嘌呤-DNA-甲基转移酶 (MGMT) 中。使用携带报告基因修饰的颅内异种移植动物模型的非侵入性成像,我们定量评估了由靶向 MGMT 的 siRNA 双链体 (siMGMT-SNAs) 组成的 SNA 对 MGMT 敲低的作用。我们表明,通过单次尾静脉注射系统给药的 siMGMT-SNAs 能够在体内实现强大的肿瘤内 MGMT 蛋白敲低,并且通过对肿瘤组织的 Western 印迹分析证实了持续的 SNA 剂量依赖性 MGMT 沉默。对 SNA 体内分布和药代动力学的分析表明,快速的肿瘤内摄取和显著的肿瘤内保留增加了联合给予替莫唑胺 (TMZ) 的抗肿瘤活性。我们的研究表明,癌症异种移植模型的双非侵入性生物发光和 NIR 荧光成像代表了一种强大的体内策略,用于鉴定具有强大基因沉默活性的基于 RNAi 的纳米疗法,并将为这些构建体的进一步临床前和临床研究提供信息。