Suppr超能文献

Rad51降解:在胶质母细胞瘤溶瘤病毒-聚(ADP-核糖)聚合酶抑制剂联合治疗中的作用

Rad51 Degradation: Role in Oncolytic Virus-Poly(ADP-Ribose) Polymerase Inhibitor Combination Therapy in Glioblastoma.

作者信息

Ning Jianfang, Wakimoto Hiroaki, Peters Cole, Martuza Robert L, Rabkin Samuel D

机构信息

Molecular Neurosurgery Laboratory, Brain Tumor Research Center, Massachusetts General Hospital, Boston, MA, USA.

Department of Neurosurgery, Harvard Medical School, Boston, MA, USA.

出版信息

J Natl Cancer Inst. 2017 Mar 1;109(3):1-13. doi: 10.1093/jnci/djw229.

Abstract

BACKGROUND

Clinical success of poly(ADP-ribose) polymerase inhibitors (PARP i ) has been limited to repair-deficient cancers and by resistance. Oncolytic herpes simplex viruses (oHSVs) selectively kill cancer cells, irrespective of mutation, and manipulate DNA damage responses (DDR). Here, we explore potential synthetic lethal-like interactions between oHSV and PARP i .

METHODS

The efficacy of combining PARP i , oHSV MG18L, and G47Δ in killing patient-derived glioblastoma stem cells (GSCs) was assessed using cell viability assays and Chou-Talalay synergy analysis. Effects on DDR pathways, apoptosis, and cell cycle after manipulation with pharmacological inhibitors and lentivirus-mediated knockdown or overexpression were examined by immunoblotting and FACS. In vivo efficacy was evaluated in two GSC-derived orthotopic xenograft models (n = 7-8 per group). All statistical tests were two-sided.

RESULTS

GSCs are differentially sensitive to PARP i despite uniform inhibition of PARP activity. oHSV sensitized GSCs to PARP i , irrespective of their PARP i sensitivity through selective proteasomal degradation of key DDR proteins; Rad51, mediating the combination effects; and Chk1. Rad51 degradation required HSV DNA replication. This synthetic lethal-like interaction increased DNA damage, apoptosis, and cell death in vitro and in vivo. Combined treatment of mice bearing PARP i -sensitive or -resistant GSC-derived brain tumors greatly extended median survival compared to either agent alone (vs olaparib: P ≤.001; vs MG18L: P  = .005; median survival for sensitive of 83 [95% CI = 77 to 86], 94 [95% CI = 75 to 107], 102 [95% CI = 85 to 110], and 131 [95% CI = 108 to 170] days and for resistant of 54 [95% CI = 52 to 58], 56 [95% CI = 52 to 61], 62 [95% CI = 56 to 72], and 75 [95% CI = 64 to 90] days for mock, PARPi, oHSV, and combination, respectively).

CONCLUSIONS

The unique oHSV property to target multiple components of DDR generates cancer selective sensitivity to PARP i . This combination of oHSV with PARP i is a new anticancer strategy that overcomes the clinical barriers of PARP i resistance and DNA repair proficiency and is applicable not only to glioblastoma, an invariably lethal tumor, but also to other tumor types.

摘要

背景

聚(ADP - 核糖)聚合酶抑制剂(PARP i)的临床成功仅限于修复缺陷型癌症且受到耐药性限制。溶瘤单纯疱疹病毒(oHSV)可选择性杀死癌细胞,无论其是否发生突变,并可调控DNA损伤反应(DDR)。在此,我们探索oHSV与PARP i之间潜在的合成致死样相互作用。

方法

使用细胞活力测定和Chou - Talalay协同分析评估PARP i、oHSV MG18L和G47Δ联合作用对患者来源的胶质母细胞瘤干细胞(GSCs)的杀伤效果。通过免疫印迹和流式细胞术检测用药物抑制剂以及慢病毒介导的敲低或过表达处理后对DDR途径、细胞凋亡和细胞周期的影响。在两种GSC来源的原位异种移植模型中评估体内疗效(每组n = 7 - 8)。所有统计检验均为双侧检验。

结果

尽管PARP活性受到一致抑制,但GSCs对PARP i的敏感性存在差异。oHSV使GSCs对PARP i敏感,无论其对PARP i的敏感性如何,这是通过关键DDR蛋白的选择性蛋白酶体降解实现的;Rad51介导联合效应;还有Chk1。Rad51的降解需要HSV DNA复制。这种合成致死样相互作用在体外和体内均增加了DNA损伤、细胞凋亡和细胞死亡。与单独使用任何一种药物相比,联合治疗携带PARP i敏感或耐药GSC来源脑肿瘤的小鼠可显著延长中位生存期(与奥拉帕尼相比:P≤0.001;与MG18L相比:P = 0.005;敏感组的中位生存期分别为模拟组83天[95%CI = 77至86]、PARPi组94天[95%CI = 75至107]、oHSV组102天[95%CI = 85至110]、联合组131天[95%CI = 108至170];耐药组分别为模拟组54天[95%CI = 52至58]、PARPi组56天[95%CI = 52至61]、oHSV组62天[95%CI = 56至72]、联合组75天[95%CI = 64至90])。

结论

oHSV靶向DDR多个组分的独特特性使癌症对PARP i产生选择性敏感性。oHSV与PARP i的这种联合是一种新的抗癌策略,克服了PARP i耐药性和DNA修复能力的临床障碍,不仅适用于胶质母细胞瘤这种 invariably lethal肿瘤,也适用于其他肿瘤类型。

相似文献

2
Oncolytic virus-mediated manipulation of DNA damage responses: synergy with chemotherapy in killing glioblastoma stem cells.
J Natl Cancer Inst. 2012 Jan 4;104(1):42-55. doi: 10.1093/jnci/djr509. Epub 2011 Dec 15.
3
A novel oncolytic herpes simplex virus that synergizes with phosphoinositide 3-kinase/Akt pathway inhibitors to target glioblastoma stem cells.
Clin Cancer Res. 2011 Jun 1;17(11):3686-96. doi: 10.1158/1078-0432.CCR-10-3142. Epub 2011 Apr 19.
7
Enhanced antitumor efficacy of low-dose Etoposide with oncolytic herpes simplex virus in human glioblastoma stem cell xenografts.
Clin Cancer Res. 2011 Dec 1;17(23):7383-93. doi: 10.1158/1078-0432.CCR-11-1762. Epub 2011 Oct 5.

引用本文的文献

1
Immunocompetent murine glioblastoma stem-like cell models exhibiting distinct phenotypes.
Neurooncol Adv. 2024 Dec 7;7(1):vdae215. doi: 10.1093/noajnl/vdae215. eCollection 2025 Jan-Dec.
2
Oncolytic vesicular stomatitis virus alone or in combination with JAK inhibitors is effective against ovarian cancer.
Mol Ther Oncol. 2024 Jun 8;32(3):200826. doi: 10.1016/j.omton.2024.200826. eCollection 2024 Sep 19.
3
Photodynamic augmentation of oncolytic virus therapy for central nervous system malignancies.
Cancer Lett. 2023 Sep 28;572:216363. doi: 10.1016/j.canlet.2023.216363. Epub 2023 Aug 22.
4
Oncolytic virotherapy evolved into the fourth generation as tumor immunotherapy.
J Transl Med. 2023 Jul 25;21(1):500. doi: 10.1186/s12967-023-04360-8.
5
Oncolytic herpes simplex viruses for the treatment of glioma and targeting glioblastoma stem-like cells.
Front Cell Infect Microbiol. 2023 May 31;13:1206111. doi: 10.3389/fcimb.2023.1206111. eCollection 2023.
6
Prognostic and Predictive Biomarkers in Familial Breast Cancer.
Cancers (Basel). 2023 Feb 20;15(4):1346. doi: 10.3390/cancers15041346.
7
Histone deacetylase inhibitors enhance oncolytic herpes simplex virus therapy for malignant meningioma.
Biomed Pharmacother. 2022 Nov;155:113843. doi: 10.1016/j.biopha.2022.113843. Epub 2022 Oct 8.
8
Role of PARP Inhibitors in Glioblastoma and Perceiving Challenges as Well as Strategies for Successful Clinical Development.
Front Pharmacol. 2022 Jul 6;13:939570. doi: 10.3389/fphar.2022.939570. eCollection 2022.
9
Oncolytic viral vectors in the era of diversified cancer therapy: from preclinical to clinical.
Clin Transl Oncol. 2022 Sep;24(9):1682-1701. doi: 10.1007/s12094-022-02830-x. Epub 2022 May 25.
10
Proteins from the DNA Damage Response: Regulation, Dysfunction, and Anticancer Strategies.
Cancers (Basel). 2021 Jul 29;13(15):3819. doi: 10.3390/cancers13153819.

本文引用的文献

1
Molecular Pathways: Mechanism of Action for Talimogene Laherparepvec, a New Oncolytic Virus Immunotherapy.
Clin Cancer Res. 2016 Mar 1;22(5):1048-54. doi: 10.1158/1078-0432.CCR-15-2667. Epub 2015 Dec 30.
3
Targeting the DNA Damage Response in Cancer.
Mol Cell. 2015 Nov 19;60(4):547-60. doi: 10.1016/j.molcel.2015.10.040.
4
Designing Herpes Viruses as Oncolytics.
Mol Ther Oncolytics. 2015;2:15010-. doi: 10.1038/mto.2015.10. Epub 2015 Jul 22.
5
HSV-I and the cellular DNA damage response.
Future Virol. 2015 Apr;10(4):383-397. doi: 10.2217/fvl.15.18.
7
The PARP1 inhibitor BMN 673 exhibits immunoregulatory effects in a Brca1(-/-) murine model of ovarian cancer.
Biochem Biophys Res Commun. 2015 Aug 7;463(4):551-6. doi: 10.1016/j.bbrc.2015.05.083. Epub 2015 Jun 3.
8
Poly (ADP-ribose) polymerase inhibitors: recent advances and future development.
J Clin Oncol. 2015 Apr 20;33(12):1397-406. doi: 10.1200/JCO.2014.58.8848. Epub 2015 Mar 16.
9
Genetic and functional diversity of propagating cells in glioblastoma.
Stem Cell Reports. 2015 Jan 13;4(1):7-15. doi: 10.1016/j.stemcr.2014.11.003. Epub 2014 Dec 18.
10
Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors.
Annu Rev Med. 2015;66:455-70. doi: 10.1146/annurev-med-050913-022545. Epub 2014 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验