Suppr超能文献

亨廷顿蛋白外显子 1 片段的聚集景观和亨廷顿病发病的关键重复长度。

Aggregation landscapes of Huntingtin exon 1 protein fragments and the critical repeat length for the onset of Huntington's disease.

机构信息

Center for Theoretical Biological Physics, Rice University, Houston, TX 77005.

Department of Bioengineering, Rice University, Houston, TX 77005.

出版信息

Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4406-4411. doi: 10.1073/pnas.1702237114. Epub 2017 Apr 11.

Abstract

Huntington's disease (HD) is a neurodegenerative disease caused by an abnormal expansion in the polyglutamine (polyQ) track of the Huntingtin (HTT) protein. The severity of the disease depends on the polyQ repeat length, arising only in patients with proteins having 36 repeats or more. Previous studies have shown that the aggregation of N-terminal fragments (encoded by HTT exon 1) underlies the disease pathology in mouse models and that the HTT exon 1 gene product can self-assemble into amyloid structures. Here, we provide detailed structural mechanisms for aggregation of several protein fragments encoded by HTT exon 1 by using the associative memory, water-mediated, structure and energy model (AWSEM) to construct their free energy landscapes. We find that the addition of the N-terminal 17-residue sequence ([Formula: see text]) facilitates polyQ aggregation by encouraging the formation of prefibrillar oligomers, whereas adding the C-terminal polyproline sequence ([Formula: see text]) inhibits aggregation. The combination of both terminal additions in HTT exon 1 fragment leads to a complex aggregation mechanism with a basic core that resembles that found for the aggregation of pure polyQ repeats using AWSEM. At the extrapolated physiological concentration, although the grand canonical free energy profiles are uphill for HTT exon 1 fragments having 20 or 30 glutamines, the aggregation landscape for fragments with 40 repeats has become downhill. This computational prediction agrees with the critical length found for the onset of HD and suggests potential therapies based on blocking early binding events involving the terminal additions to the polyQ repeats.

摘要

亨廷顿病(HD)是一种由亨廷顿(HTT)蛋白中异常扩展的多聚谷氨酰胺(polyQ)轨道引起的神经退行性疾病。疾病的严重程度取决于 polyQ 重复长度,仅在具有 36 个重复或更多重复的患者中出现。先前的研究表明,N 端片段(由 HTT 外显子 1 编码)的聚集是小鼠模型中疾病病理学的基础,并且 HTT 外显子 1 基因产物可以自我组装成淀粉样结构。在这里,我们使用关联记忆、水介导、结构和能量模型(AWSEM)来构建它们的自由能景观,为 HTT 外显子 1 编码的几个蛋白质片段的聚集提供了详细的结构机制。我们发现,添加 N 端 17 个残基序列([Formula: see text])通过鼓励形成前纤维寡聚物来促进 polyQ 聚集,而添加 C 端多脯氨酸序列([Formula: see text])则抑制聚集。HTT 外显子 1 片段中这两个末端添加的组合导致了一种复杂的聚集机制,其基本核心类似于使用 AWSEM 对纯 polyQ 重复的聚集。在推断的生理浓度下,尽管具有 20 或 30 个谷氨酸的 HTT 外显子 1 片段的巨正则自由能分布是上坡的,但具有 40 个重复的片段的聚集景观已经变成下坡。这种计算预测与 HD 发病的关键长度一致,并提出了基于阻断涉及 polyQ 重复末端添加的早期结合事件的潜在治疗方法。

相似文献

1
Aggregation landscapes of Huntingtin exon 1 protein fragments and the critical repeat length for the onset of Huntington's disease.
Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4406-4411. doi: 10.1073/pnas.1702237114. Epub 2017 Apr 11.
3
Exploding the Repeat Length Paradigm while Exploring Amyloid Toxicity in Huntington's Disease.
Acc Chem Res. 2020 Oct 20;53(10):2347-2357. doi: 10.1021/acs.accounts.0c00450. Epub 2020 Sep 25.
4
Structural insights into the aggregation mechanism of huntingtin exon 1 protein fragment with different polyQ-lengths.
J Cell Biochem. 2019 Jun;120(6):10519-10529. doi: 10.1002/jcb.28338. Epub 2019 Jan 22.
5
Unraveling the Molecular Complexity of N-Terminus Huntingtin Oligomers: Insights into Polymorphic Structures.
J Phys Chem B. 2024 Aug 15;128(32):7761-7769. doi: 10.1021/acs.jpcb.4c03274. Epub 2024 Aug 2.
7
8
Structure and Dynamics of the Huntingtin Exon-1 N-Terminus: A Solution NMR Perspective.
J Am Chem Soc. 2017 Jan 25;139(3):1168-1176. doi: 10.1021/jacs.6b10893. Epub 2017 Jan 13.

引用本文的文献

1
Huntington's chorea: emerging fields in therapeutics (Review).
Neurogenetics. 2025 Sep 6;26(1):66. doi: 10.1007/s10048-025-00848-1.
3
Generating the polymorph landscapes of amyloid fibrils using AI: RibbonFold.
Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2501321122. doi: 10.1073/pnas.2501321122. Epub 2025 Apr 15.
4
Glutamine missense suppressor transfer RNAs inhibit polyglutamine aggregation.
Mol Ther Nucleic Acids. 2024 Dec 21;36(1):102442. doi: 10.1016/j.omtn.2024.102442. eCollection 2025 Mar 11.
5
Pleiotropic effects of mutant huntingtin on retinopathy in two mouse models of Huntington's disease.
Neurobiol Dis. 2025 Feb;205:106780. doi: 10.1016/j.nbd.2024.106780. Epub 2024 Dec 28.
6
Emerging roles of cannabinoid receptor CB2 receptor in the central nervous system: therapeutic target for CNS disorders.
Psychopharmacology (Berl). 2024 Oct;241(10):1939-1954. doi: 10.1007/s00213-024-06683-w. Epub 2024 Sep 12.
8
MicroRNA biomarkers as next-generation diagnostic tools for neurodegenerative diseases: a comprehensive review.
Front Mol Neurosci. 2024 May 31;17:1386735. doi: 10.3389/fnmol.2024.1386735. eCollection 2024.
10
The polyglutamine domain is the primary driver of seeding in huntingtin aggregation.
PLoS One. 2024 Mar 14;19(3):e0298323. doi: 10.1371/journal.pone.0298323. eCollection 2024.

本文引用的文献

1
Structure and Dynamics of the Huntingtin Exon-1 N-Terminus: A Solution NMR Perspective.
J Am Chem Soc. 2017 Jan 25;139(3):1168-1176. doi: 10.1021/jacs.6b10893. Epub 2017 Jan 13.
2
Protein Folding and Structure Prediction from the Ground Up II: AAWSEM for α/β Proteins.
J Phys Chem B. 2017 Apr 20;121(15):3473-3482. doi: 10.1021/acs.jpcb.6b09347. Epub 2016 Nov 11.
3
The Aggregation Free Energy Landscapes of Polyglutamine Repeats.
J Am Chem Soc. 2016 Nov 23;138(46):15197-15203. doi: 10.1021/jacs.6b08665. Epub 2016 Nov 10.
5
Exploring the aggregation free energy landscape of the amyloid-β protein (1-40).
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11835-11840. doi: 10.1073/pnas.1612362113. Epub 2016 Oct 3.
6
Protein Folding and Structure Prediction from the Ground Up: The Atomistic Associative Memory, Water Mediated, Structure and Energy Model.
J Phys Chem B. 2016 Aug 25;120(33):8557-65. doi: 10.1021/acs.jpcb.6b02451. Epub 2016 May 13.
7
Energy landscapes of a mechanical prion and their implications for the molecular mechanism of long-term memory.
Proc Natl Acad Sci U S A. 2016 May 3;113(18):5006-11. doi: 10.1073/pnas.1602702113. Epub 2016 Apr 18.
8
Phase Separation: Linking Cellular Compartmentalization to Disease.
Trends Cell Biol. 2016 Jul;26(7):547-558. doi: 10.1016/j.tcb.2016.03.004. Epub 2016 Apr 1.
9
Universality of supersaturation in protein-fiber formation.
Nat Struct Mol Biol. 2016 May;23(5):459-61. doi: 10.1038/nsmb.3197. Epub 2016 Mar 28.
10
The Biology of Huntingtin.
Neuron. 2016 Mar 2;89(5):910-26. doi: 10.1016/j.neuron.2016.02.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验