Suppr超能文献

阿奇霉素会引发一种新型的心律失常综合征。

Azithromycin Causes a Novel Proarrhythmic Syndrome.

作者信息

Yang Zhenjiang, Prinsen Joseph K, Bersell Kevin R, Shen Wangzhen, Yermalitskaya Liudmila, Sidorova Tatiana, Luis Paula B, Hall Lynn, Zhang Wei, Du Liping, Milne Ginger, Tucker Patrick, George Alfred L, Campbell Courtney M, Pickett Robert A, Shaffer Christian M, Chopra Nagesh, Yang Tao, Knollmann Bjorn C, Roden Dan M, Murray Katherine T

机构信息

From the Department of Medicine and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN.

出版信息

Circ Arrhythm Electrophysiol. 2017 Apr;10(4). doi: 10.1161/CIRCEP.115.003560.

Abstract

BACKGROUND

The widely used macrolide antibiotic azithromycin increases risk of cardiovascular and sudden cardiac death, although the underlying mechanisms are unclear. Case reports, including the one we document here, demonstrate that azithromycin can cause rapid, polymorphic ventricular tachycardia in the absence of QT prolongation, indicating a novel proarrhythmic syndrome. We investigated the electrophysiological effects of azithromycin in vivo and in vitro using mice, cardiomyocytes, and human ion channels heterologously expressed in human embryonic kidney (HEK 293) and Chinese hamster ovary (CHO) cells.

METHODS AND RESULTS

In conscious telemetered mice, acute intraperitoneal and oral administration of azithromycin caused effects consistent with multi-ion channel block, with significant sinus slowing and increased PR, QRS, QT, and QTc intervals, as seen with azithromycin overdose. Similarly, in HL-1 cardiomyocytes, the drug slowed sinus automaticity, reduced phase 0 upstroke slope, and prolonged action potential duration. Acute exposure to azithromycin reduced peak SCN5A currents in HEK cells (IC=110±3 μmol/L) and Na current in mouse ventricular myocytes. However, with chronic (24 hour) exposure, azithromycin caused a ≈2-fold increase in both peak and late SCN5A currents, with findings confirmed for I in cardiomyocytes. Mild block occurred for K currents representing I (CHO cells expressing hERG; IC=219±21 μmol/L) and I (CHO cells expressing KCNQ1+KCNE1; IC=184±12 μmol/L), whereas azithromycin suppressed L-type Ca currents (rabbit ventricular myocytes, IC=66.5±4 μmol/L) and I (HEK cells expressing Kir2.1, IC=44±3 μmol/L).

CONCLUSIONS

Chronic exposure to azithromycin increases cardiac Na current to promote intracellular Na loading, providing a potential mechanistic basis for the novel form of proarrhythmia seen with this macrolide antibiotic.

摘要

背景

广泛使用的大环内酯类抗生素阿奇霉素会增加心血管疾病和心源性猝死的风险,但其潜在机制尚不清楚。病例报告,包括我们在此记录的这一例,表明阿奇霉素可在不伴有QT间期延长的情况下引发快速、多形性室性心动过速,提示一种新的致心律失常综合征。我们使用小鼠、心肌细胞以及在人胚肾(HEK 293)细胞和中国仓鼠卵巢(CHO)细胞中异源表达的人离子通道,研究了阿奇霉素在体内和体外的电生理效应。

方法与结果

在清醒的遥测小鼠中,急性腹腔注射和口服阿奇霉素会产生与多离子通道阻滞一致的效应,出现显著的窦性心动过缓和PR、QRS、QT及QTc间期延长,这与阿奇霉素过量时所见情况相同。同样,在HL-1心肌细胞中,该药物会减慢窦性自律性、降低0期去极化斜率并延长动作电位时程。急性暴露于阿奇霉素会降低HEK细胞中的SCN5A电流峰值(IC = 110±3 μmol/L)以及小鼠心室肌细胞中的钠电流。然而,在慢性(24小时)暴露后,阿奇霉素会使SCN5A电流的峰值和晚期电流均增加约2倍,心肌细胞中的I电流也得到了证实。代表I(表达hERG的CHO细胞;IC = 219±21 μmol/L)和I(表达KCNQ1 + KCNE1的CHO细胞;IC = 184±12 μmol/L)的钾电流出现轻度阻滞,而阿奇霉素会抑制L型钙电流(兔心室肌细胞,IC = 66.5±4 μmol/L)和I(表达Kir2.1的HEK细胞,IC = 44±3 μmol/L)。

结论

长期暴露于阿奇霉素会增加心脏钠电流,促进细胞内钠负荷增加,为这种大环内酯类抗生素所致新型心律失常提供了潜在的机制基础。

相似文献

1
Azithromycin Causes a Novel Proarrhythmic Syndrome.
Circ Arrhythm Electrophysiol. 2017 Apr;10(4). doi: 10.1161/CIRCEP.115.003560.
4
Voltage gated ion channels blockade is the underlying mechanism of BIMU8 induced cardiotoxicity.
Toxicol Lett. 2017 Aug 5;277:64-68. doi: 10.1016/j.toxlet.2017.05.024. Epub 2017 May 25.
5
Modulation of the heart's electrical properties by the anticonvulsant drug retigabine.
Toxicol Appl Pharmacol. 2017 Aug 15;329:309-317. doi: 10.1016/j.taap.2017.06.018. Epub 2017 Jun 20.
6
Screening for acute IKr block is insufficient to detect torsades de pointes liability: role of late sodium current.
Circulation. 2014 Jul 15;130(3):224-34. doi: 10.1161/CIRCULATIONAHA.113.007765. Epub 2014 Jun 3.
7
Differential effects of the β-adrenoceptor blockers carvedilol and metoprolol on SQT1- and SQT2-mutant channels.
J Cardiovasc Electrophysiol. 2013 Oct;24(10):1163-71. doi: 10.1111/jce.12178. Epub 2013 May 29.
8
Exploration of human, rat, and rabbit embryonic cardiomyocytes suggests K-channel block as a common teratogenic mechanism.
Cardiovasc Res. 2013 Jan 1;97(1):23-32. doi: 10.1093/cvr/cvs296. Epub 2012 Sep 20.
9
Brugada syndrome trafficking-defective Nav1.5 channels can trap cardiac Kir2.1/2.2 channels.
JCI Insight. 2018 Sep 20;3(18). doi: 10.1172/jci.insight.96291.

引用本文的文献

1
Development of a dry powder formulation for pulmonary delivery of azithromycin-loaded nanoparticles.
J Pharm Pharm Sci. 2024 Oct 14;27:13635. doi: 10.3389/jpps.2024.13635. eCollection 2024.
2
Cardiovascular adverse effects of antiviral therapies for COVID-19: Evidence and plausible mechanisms.
Acta Pharmacol Sin. 2025 Mar;46(3):554-564. doi: 10.1038/s41401-024-01382-w. Epub 2024 Sep 9.
3
Electrophysiological Profile of Different Antiviral Therapies in a Rabbit Whole-Heart Model.
Cardiovasc Toxicol. 2024 Jul;24(7):656-666. doi: 10.1007/s12012-024-09872-3. Epub 2024 Jun 8.
5
Hydroxychloroquine and azithromycin alter the contractility of living porcine heart slices.
Front Pharmacol. 2023 May 5;14:1127388. doi: 10.3389/fphar.2023.1127388. eCollection 2023.
6
Microfluidic Organ-Chips and Stem Cell Models in the Fight Against COVID-19.
Circ Res. 2023 May 12;132(10):1405-1424. doi: 10.1161/CIRCRESAHA.122.321877. Epub 2023 May 11.
7
Administration of macrolide antibiotics increases cardiovascular risk.
Front Cardiovasc Med. 2023 Feb 23;10:1117254. doi: 10.3389/fcvm.2023.1117254. eCollection 2023.
8
Effects of COVID-19 on Arrhythmia.
J Cardiovasc Dev Dis. 2022 Sep 2;9(9):292. doi: 10.3390/jcdd9090292.
9
Long COVID-19 and the Heart: Is Cardiac Mitochondria the Missing Link?
Antioxid Redox Signal. 2023 Mar;38(7-9):599-618. doi: 10.1089/ars.2022.0126. Epub 2022 Dec 28.
10
Prevalence, Outcomes, and Management of Ventricular Arrhythmias in COVID-19 Patients.
Card Electrophysiol Clin. 2022 Mar;14(1):11-20. doi: 10.1016/j.ccep.2021.10.002. Epub 2021 Oct 29.

本文引用的文献

2
Deranged sodium to sudden death.
J Physiol. 2015 Mar 15;593(6):1331-45. doi: 10.1113/jphysiol.2014.281204.
3
Gain-of-function mutation of the SCN5A gene causes exercise-induced polymorphic ventricular arrhythmias.
Circ Cardiovasc Genet. 2014 Dec;7(6):771-81. doi: 10.1161/CIRCGENETICS.114.000703. Epub 2014 Sep 10.
4
Screening for acute IKr block is insufficient to detect torsades de pointes liability: role of late sodium current.
Circulation. 2014 Jul 15;130(3):224-34. doi: 10.1161/CIRCULATIONAHA.113.007765. Epub 2014 Jun 3.
5
Exome sequencing implicates an increased burden of rare potassium channel variants in the risk of drug-induced long QT interval syndrome.
J Am Coll Cardiol. 2014 Apr 15;63(14):1430-7. doi: 10.1016/j.jacc.2014.01.031. Epub 2014 Feb 19.
6
Azithromycin pharmacokinetics in the serum and its distribution to the skin in healthy dogs and dogs with pyoderma.
Vet J. 2014 Apr;200(1):122-6. doi: 10.1016/j.tvjl.2013.12.022. Epub 2014 Jan 7.
7
Na⁺ transport in the normal and failing heart - remember the balance.
J Mol Cell Cardiol. 2013 Aug;61:2-10. doi: 10.1016/j.yjmcc.2013.04.011. Epub 2013 Apr 19.
8
Channelopathies from mutations in the cardiac sodium channel protein complex.
J Mol Cell Cardiol. 2013 Aug;61:34-43. doi: 10.1016/j.yjmcc.2013.03.017. Epub 2013 Apr 1.
9
Azithromycin and the risk of cardiovascular death.
N Engl J Med. 2012 May 17;366(20):1881-90. doi: 10.1056/NEJMoa1003833.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验