Yang Zhenjiang, Prinsen Joseph K, Bersell Kevin R, Shen Wangzhen, Yermalitskaya Liudmila, Sidorova Tatiana, Luis Paula B, Hall Lynn, Zhang Wei, Du Liping, Milne Ginger, Tucker Patrick, George Alfred L, Campbell Courtney M, Pickett Robert A, Shaffer Christian M, Chopra Nagesh, Yang Tao, Knollmann Bjorn C, Roden Dan M, Murray Katherine T
From the Department of Medicine and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN.
Circ Arrhythm Electrophysiol. 2017 Apr;10(4). doi: 10.1161/CIRCEP.115.003560.
The widely used macrolide antibiotic azithromycin increases risk of cardiovascular and sudden cardiac death, although the underlying mechanisms are unclear. Case reports, including the one we document here, demonstrate that azithromycin can cause rapid, polymorphic ventricular tachycardia in the absence of QT prolongation, indicating a novel proarrhythmic syndrome. We investigated the electrophysiological effects of azithromycin in vivo and in vitro using mice, cardiomyocytes, and human ion channels heterologously expressed in human embryonic kidney (HEK 293) and Chinese hamster ovary (CHO) cells.
In conscious telemetered mice, acute intraperitoneal and oral administration of azithromycin caused effects consistent with multi-ion channel block, with significant sinus slowing and increased PR, QRS, QT, and QTc intervals, as seen with azithromycin overdose. Similarly, in HL-1 cardiomyocytes, the drug slowed sinus automaticity, reduced phase 0 upstroke slope, and prolonged action potential duration. Acute exposure to azithromycin reduced peak SCN5A currents in HEK cells (IC=110±3 μmol/L) and Na current in mouse ventricular myocytes. However, with chronic (24 hour) exposure, azithromycin caused a ≈2-fold increase in both peak and late SCN5A currents, with findings confirmed for I in cardiomyocytes. Mild block occurred for K currents representing I (CHO cells expressing hERG; IC=219±21 μmol/L) and I (CHO cells expressing KCNQ1+KCNE1; IC=184±12 μmol/L), whereas azithromycin suppressed L-type Ca currents (rabbit ventricular myocytes, IC=66.5±4 μmol/L) and I (HEK cells expressing Kir2.1, IC=44±3 μmol/L).
Chronic exposure to azithromycin increases cardiac Na current to promote intracellular Na loading, providing a potential mechanistic basis for the novel form of proarrhythmia seen with this macrolide antibiotic.
广泛使用的大环内酯类抗生素阿奇霉素会增加心血管疾病和心源性猝死的风险,但其潜在机制尚不清楚。病例报告,包括我们在此记录的这一例,表明阿奇霉素可在不伴有QT间期延长的情况下引发快速、多形性室性心动过速,提示一种新的致心律失常综合征。我们使用小鼠、心肌细胞以及在人胚肾(HEK 293)细胞和中国仓鼠卵巢(CHO)细胞中异源表达的人离子通道,研究了阿奇霉素在体内和体外的电生理效应。
在清醒的遥测小鼠中,急性腹腔注射和口服阿奇霉素会产生与多离子通道阻滞一致的效应,出现显著的窦性心动过缓和PR、QRS、QT及QTc间期延长,这与阿奇霉素过量时所见情况相同。同样,在HL-1心肌细胞中,该药物会减慢窦性自律性、降低0期去极化斜率并延长动作电位时程。急性暴露于阿奇霉素会降低HEK细胞中的SCN5A电流峰值(IC = 110±3 μmol/L)以及小鼠心室肌细胞中的钠电流。然而,在慢性(24小时)暴露后,阿奇霉素会使SCN5A电流的峰值和晚期电流均增加约2倍,心肌细胞中的I电流也得到了证实。代表I(表达hERG的CHO细胞;IC = 219±21 μmol/L)和I(表达KCNQ1 + KCNE1的CHO细胞;IC = 184±12 μmol/L)的钾电流出现轻度阻滞,而阿奇霉素会抑制L型钙电流(兔心室肌细胞,IC = 66.5±4 μmol/L)和I(表达Kir2.1的HEK细胞,IC = 44±3 μmol/L)。
长期暴露于阿奇霉素会增加心脏钠电流,促进细胞内钠负荷增加,为这种大环内酯类抗生素所致新型心律失常提供了潜在的机制基础。