Suppr超能文献

分子马达在不同尺度上的模拟方法。

Methodology for the Simulation of Molecular Motors at Different Scales.

机构信息

Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , 405 North Mathews Avenue, Urbana, Illinois 61801, United States.

Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7565, Université de Lorraine , B.P. 70239, 54506 Vandœuvre-lès-Nancy cedex, France.

出版信息

J Phys Chem B. 2017 Apr 20;121(15):3502-3514. doi: 10.1021/acs.jpcb.6b09350. Epub 2016 Nov 30.

Abstract

Millisecond-scale conformational transitions represent a seminal challenge for traditional molecular dynamics simulations, even with the help of high-end supercomputer architectures. Such events are particularly relevant to the study of molecular motors-proteins or abiological constructs that convert chemical energy into mechanical work. Here, we present a hybrid-simulation scheme combining an array of methods including elastic network models, transition path sampling, and advanced free-energy methods, possibly in conjunction with generalized-ensemble schemes to deliver a viable option for capturing the millisecond-scale motor steps of biological motors. The methodology is already implemented in large measure in popular molecular dynamics programs, and it can leverage the massively parallel capabilities of petascale computers. The applicability of the hybrid method is demonstrated with two examples, namely cyclodextrin-based motors and V-type ATPases.

摘要

纳秒级构象转变是传统分子动力学模拟面临的一个重大挑战,即使借助高端超级计算机架构也是如此。这类事件对于研究分子马达(将化学能转化为机械能的蛋白质或非生物构建体)尤为重要。在此,我们提出了一种混合模拟方案,结合了一系列方法,包括弹性网络模型、跃迁路径采样和高级自由能方法,可能还结合了广义系综方案,为捕捉生物马达的纳秒级马达步骤提供了可行的选择。该方法已经在流行的分子动力学程序中得到了广泛的实现,并可以利用千万亿次级计算机的大规模并行能力。该混合方法的适用性通过两个实例得到了证明,即基于环糊精的马达和 V 型 ATP 酶。

相似文献

1
Methodology for the Simulation of Molecular Motors at Different Scales.
J Phys Chem B. 2017 Apr 20;121(15):3502-3514. doi: 10.1021/acs.jpcb.6b09350. Epub 2016 Nov 30.
2
Structure and dynamics of rotary V motor.
Cell Mol Life Sci. 2018 May;75(10):1789-1802. doi: 10.1007/s00018-018-2758-3. Epub 2018 Jan 31.
3
Rotation of artificial rotor axles in rotary molecular motors.
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11214-11219. doi: 10.1073/pnas.1605640113. Epub 2016 Sep 19.
4
[Two rotary molecular motors, V-ATPase and F0F1].
Seikagaku. 2007 May;79(5):425-37.
5
A simplified model for V-ATPase H+ extrusion.
IEEE Trans Nanobioscience. 2004 Dec;3(4):257-64. doi: 10.1109/tnb.2004.837905.
8
Subunit rotation of vacuolar-type proton pumping ATPase: relative rotation of the G and C subunits.
J Biol Chem. 2003 Jun 27;278(26):23714-9. doi: 10.1074/jbc.M302756200. Epub 2003 Apr 1.
9
Cyclodextrin-based molecular machines.
Acc Chem Res. 2001 Jun;34(6):456-64. doi: 10.1021/ar000174l.

引用本文的文献

3
Perspective: Path Sampling Methods Applied to Enzymatic Catalysis.
J Chem Theory Comput. 2022 Nov 8;18(11):6397-6406. doi: 10.1021/acs.jctc.2c00734. Epub 2022 Oct 28.
4
Revealing a Hidden Intermediate of Rotatory Catalysis with X-ray Crystallography and Molecular Simulations.
ACS Cent Sci. 2022 Jul 27;8(7):915-925. doi: 10.1021/acscentsci.1c01599. Epub 2022 Jun 14.
5
XFEL and NMR Structures of Francisella Lipoprotein Reveal Conformational Space of Drug Target against Tularemia.
Structure. 2020 May 5;28(5):540-547.e3. doi: 10.1016/j.str.2020.02.005. Epub 2020 Mar 5.
6
Multiscale simulation unravel the kinetic mechanisms of inflammasome assembly.
Biochim Biophys Acta Mol Cell Res. 2020 Feb;1867(2):118612. doi: 10.1016/j.bbamcr.2019.118612. Epub 2019 Nov 21.
7
Molecular Insights on the Release of Avibactam from the Acyl-Enzyme Complex.
Biophys J. 2019 May 7;116(9):1650-1657. doi: 10.1016/j.bpj.2019.03.027. Epub 2019 Apr 2.
8
Rotational Mechanism Model of the Bacterial V Motor Based on Structural and Computational Analyses.
Front Physiol. 2019 Feb 5;10:46. doi: 10.3389/fphys.2019.00046. eCollection 2019.

本文引用的文献

1
The true nature of rotary movements in rotaxanes.
Chem Sci. 2016 Jan 1;7(1):457-462. doi: 10.1039/c5sc03022f. Epub 2015 Oct 13.
2
Flexibility Coexists with Shape-Persistence in Cyanostar Macrocycles.
J Am Chem Soc. 2016 Apr 13;138(14):4843-4851. doi: 10.1021/jacs.6b00712. Epub 2016 Apr 5.
3
Calculating Position-Dependent Diffusivity in Biased Molecular Dynamics Simulations.
J Chem Theory Comput. 2013 Feb 12;9(2):876-82. doi: 10.1021/ct300867e. Epub 2013 Jan 18.
4
Multiple-Replica Strategies for Free-Energy Calculations in NAMD: Multiple-Walker Adaptive Biasing Force and Walker Selection Rules.
J Chem Theory Comput. 2014 Dec 9;10(12):5276-85. doi: 10.1021/ct500874p. Epub 2014 Nov 26.
6
Elasticity, friction, and pathway of γ-subunit rotation in FoF1-ATP synthase.
Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):10720-5. doi: 10.1073/pnas.1500691112. Epub 2015 Aug 10.
7
Introduction: Calculations on Large Systems.
Chem Rev. 2015 Jun 24;115(12):5605-6. doi: 10.1021/acs.chemrev.5b00285.
8
Dissecting the role of the γ-subunit in the rotary-chemical coupling and torque generation of F1-ATPase.
Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2746-51. doi: 10.1073/pnas.1500979112. Epub 2015 Feb 17.
9
Mechanism of substrate translocation by a ring-shaped ATPase motor at millisecond resolution.
J Am Chem Soc. 2015 Mar 4;137(8):3031-40. doi: 10.1021/ja512605w. Epub 2015 Feb 19.
10
The adaptive biasing force method: everything you always wanted to know but were afraid to ask.
J Phys Chem B. 2015 Jan 22;119(3):1129-51. doi: 10.1021/jp506633n. Epub 2014 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验