Sasaki Takayo, Rivera-Mulia Juan Carlos, Vera Daniel, Zimmerman Jared, Das Sunny, Padget Michelle, Nakamichi Naoto, Chang Bill H, Tyner Jeff, Druker Brian J, Weng Andrew P, Civin Curt I, Eaves Connie J, Gilbert David M
Department of Biological Science, Florida State University, Tallahassee, FL.
Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL.
Exp Hematol. 2017 Jul;51:71-82.e3. doi: 10.1016/j.exphem.2017.04.004. Epub 2017 Apr 19.
Genome-wide DNA replication timing (RT) profiles reflect the global three-dimensional chromosome architecture of cells. They also provide a comprehensive and unique megabase-scale picture of cellular epigenetic state. Thus, normal differentiation involves reproducible changes in RT, and transformation generally perturbs these, although the potential effects of altered RT on the properties of transformed cells remain largely unknown. A major challenge to interrogating these issues in human acute lymphoid leukemia (ALL) is the low proliferative activity of most of the cells, which may be further reduced in cryopreserved samples and difficult to overcome in vitro. In contrast, the ability of many human ALL cell populations to expand when transplanted into highly immunodeficient mice is well documented. To examine the stability of DNA RT profiles of serially passaged xenografts of primary human B- and T-ALL cells, we first devised a method that circumvents the need for bromodeoxyuridine incorporation to distinguish early versus late S-phase cells. Using this and more standard protocols, we found consistently strong retention in xenografts of the original patient-specific RT features. Moreover, in a case in which genomic analyses indicated changing subclonal dynamics in serial passages, the RT profiles tracked concordantly. These results indicate that DNA RT is a relatively stable feature of human ALLs propagated in immunodeficient mice. In addition, they suggest the power of this approach for future interrogation of the origin and consequences of altered DNA RT in ALL.
全基因组DNA复制时间(RT)图谱反映了细胞的整体三维染色体结构。它们还提供了细胞表观遗传状态的全面且独特的兆碱基规模图景。因此,正常分化涉及RT的可重复变化,而细胞转化通常会扰乱这些变化,尽管RT改变对转化细胞特性的潜在影响在很大程度上仍不清楚。在人类急性淋巴细胞白血病(ALL)中研究这些问题的一个主要挑战是大多数细胞的增殖活性较低,在冷冻保存的样本中这种活性可能会进一步降低,并且在体外难以克服。相比之下,许多人类ALL细胞群体在移植到高度免疫缺陷小鼠中时能够扩增的能力已有充分记录。为了研究原发性人类B-ALL和T-ALL细胞连续传代异种移植的DNA RT图谱的稳定性,我们首先设计了一种方法,该方法无需掺入溴脱氧尿苷来区分早S期和晚S期细胞。使用这种方法以及更标准的方案,我们一致发现原始患者特异性RT特征在异种移植中得到了强烈保留。此外,在一个基因组分析表明连续传代中克隆亚群动态变化的案例中,RT图谱也相应地跟踪变化。这些结果表明,DNA RT是在免疫缺陷小鼠中繁殖的人类ALL的一个相对稳定的特征。此外,它们还表明了这种方法在未来探究ALL中DNA RT改变的起源和后果方面的作用。