Suppr超能文献

环境采样结合实时聚合酶链反应和基因分型,以调查工作场所Q热暴发的源头。

Environmental sampling coupled with real-time PCR and genotyping to investigate the source of a Q fever outbreak in a work setting.

作者信息

Hurtado A, Alonso E, Aspiritxaga I, López Etxaniz I, Ocabo B, Barandika J F, Fernández-Ortiz DE Murúa J I, Urbaneja F, Álvarez-Alonso R, Jado I, García-Pérez A L

机构信息

Department of Animal Health,NEIKER - Instituto Vasco de Investigación y Desarrollo Agrario,Derio,Bizkaia,Spain.

Department of Epidemiology,Subdirección de Salud Pública de Bizkaia,Gobierno Vasco,Bilbao,Bizkaia,Spain.

出版信息

Epidemiol Infect. 2017 Jul;145(9):1834-1842. doi: 10.1017/S0950268817000796. Epub 2017 Apr 24.

Abstract

A Q fever outbreak was declared in February 2016 in a company that manufactures hoists and chains and therefore with no apparent occupational-associated risk. Coxiella burnetii infection was diagnosed by serology in eight of the 29 workers of the company; seven of them had fever or flu-like signs and five had pneumonia, one requiring hospitalisation. A further case of C. burnetii pneumonia was diagnosed in a local resident. Real-time PCR (RTi-PCR) showed a widespread distribution of C. burnetii DNA in dust samples collected from the plant facilities, thus confirming the exposure of workers to the infection inside the factory. Epidemiological investigations identified a goat flock with high C. burnetii seroprevalence and active shedding which was owned and managed by one of the workers of the company as possible source of infection. Genotyping by multispacer sequence typing (MST) and a 10-loci single-nucleotide polymorphism (SNP) discrimination using RTi-PCR identified the same genotype (MST18 and SNP type 8, respectively) in the farm and the factory. These results confirmed the link between the goat farm and the outbreak and allowed the identification of the source of infection. The circumstances and possible vehicles for the bacteria entering the factory are discussed.

摘要

2016年2月,一家生产起重机和链条的公司宣布爆发Q热疫情,该公司并无明显的职业相关风险。通过血清学检测,在该公司29名工人中的8人身上诊断出伯氏考克斯体感染;其中7人有发热或流感样症状,5人患肺炎,1人需要住院治疗。当地一名居民被诊断出患有另一起伯氏考克斯体肺炎病例。实时荧光定量聚合酶链反应(RTi-PCR)显示,从工厂设施采集的灰尘样本中广泛分布着伯氏考克斯体DNA,从而证实工人在工厂内接触到了这种感染源。流行病学调查确定,公司一名工人拥有并管理的一群山羊为可能的感染源,这群山羊的伯氏考克斯体血清阳性率很高且存在活跃排菌。通过多间隔序列分型(MST)进行基因分型,并使用RTi-PCR对10个位点的单核苷酸多态性(SNP)进行鉴别,在农场和工厂中鉴定出相同的基因型(分别为MST18和SNP 8型)。这些结果证实了山羊养殖场与疫情之间的联系,并确定了感染源。本文还讨论了细菌进入工厂的情况及可能的传播媒介。

相似文献

1
Environmental sampling coupled with real-time PCR and genotyping to investigate the source of a Q fever outbreak in a work setting.
Epidemiol Infect. 2017 Jul;145(9):1834-1842. doi: 10.1017/S0950268817000796. Epub 2017 Apr 24.
4
Genotyping of Coxiella burnetii from domestic ruminants in northern Spain.
BMC Vet Res. 2012 Dec 10;8:241. doi: 10.1186/1746-6148-8-241.
5
One Health approach to controlling a Q fever outbreak on an Australian goat farm.
Epidemiol Infect. 2016 Apr;144(6):1129-41. doi: 10.1017/S0950268815002368. Epub 2015 Oct 23.
6
Presence and persistence of Coxiella burnetii in the environments of goat farms associated with a Q fever outbreak.
Appl Environ Microbiol. 2013 Mar;79(5):1697-703. doi: 10.1128/AEM.03472-12. Epub 2013 Jan 11.
7
infection persistence in a goat herd during seven kidding seasons after an outbreak of abortions: the effect of vaccination.
Appl Environ Microbiol. 2024 Mar 20;90(3):e0220123. doi: 10.1128/aem.02201-23. Epub 2024 Feb 27.
9
Coxiella burnetii Infections in Small Ruminants and Humans in Switzerland.
Transbound Emerg Dis. 2017 Feb;64(1):204-212. doi: 10.1111/tbed.12362. Epub 2015 Apr 29.
10
A Q fever outbreak associated to courier transport of pets.
PLoS One. 2019 Nov 25;14(11):e0225605. doi: 10.1371/journal.pone.0225605. eCollection 2019.

引用本文的文献

1
Detection of abortifacient agents in domestic ruminants, with a specific focus on .
Open Res Eur. 2025 Jun 30;5:94. doi: 10.12688/openreseurope.19270.2. eCollection 2025.
2
A systematic review of global Q fever outbreaks.
One Health. 2023 Dec 27;18:100667. doi: 10.1016/j.onehlt.2023.100667. eCollection 2024 Jun.
3
A Q fever outbreak among visitors to a natural cave, Bizkaia, Spain, December 2020 to October 2021.
Euro Surveill. 2023 Jul;28(28). doi: 10.2807/1560-7917.ES.2023.28.28.2200824.
4
Seroepidemiologic evidence of Q fever and associated factors among workers in veterinary service laboratory in South Korea.
PLoS Negl Trop Dis. 2022 Feb 2;16(2):e0010054. doi: 10.1371/journal.pntd.0010054. eCollection 2022 Feb.
5
Correlating Genotyping Data of with Genomic Groups.
Pathogens. 2021 May 14;10(5):604. doi: 10.3390/pathogens10050604.
8
A Q fever outbreak associated to courier transport of pets.
PLoS One. 2019 Nov 25;14(11):e0225605. doi: 10.1371/journal.pone.0225605. eCollection 2019.

本文引用的文献

1
One Health approach to controlling a Q fever outbreak on an Australian goat farm.
Epidemiol Infect. 2016 Apr;144(6):1129-41. doi: 10.1017/S0950268815002368. Epub 2015 Oct 23.
2
Q Fever Outbreak among Workers at a Waste-Sorting Plant.
PLoS One. 2015 Sep 23;10(9):e0138817. doi: 10.1371/journal.pone.0138817. eCollection 2015.
3
Coxiella burnetii infections in sheep or goats: an opinionated review.
Vet Microbiol. 2015 Dec 14;181(1-2):119-29. doi: 10.1016/j.vetmic.2015.07.011. Epub 2015 Jul 15.
4
High prevalence and two dominant host-specific genotypes of Coxiella burnetii in U.S. milk.
BMC Microbiol. 2014 Feb 17;14:41. doi: 10.1186/1471-2180-14-41.
6
Coxiella burnetii in sewage water at sewage water treatment plants in a Q fever epidemic area.
Int J Hyg Environ Health. 2013 Nov;216(6):698-702. doi: 10.1016/j.ijheh.2012.12.010. Epub 2013 Jan 22.
7
Genotyping of Coxiella burnetii from domestic ruminants in northern Spain.
BMC Vet Res. 2012 Dec 10;8:241. doi: 10.1186/1746-6148-8-241.
9
Molecular typing of Coxiella burnetii (Q fever).
Adv Exp Med Biol. 2012;984:381-96. doi: 10.1007/978-94-007-4315-1_19.
10
Epidemic genotype of Coxiella burnetii among goats, sheep, and humans in the Netherlands.
Emerg Infect Dis. 2012 May;18(5):887-9. doi: 10.3201/eid1805.111907.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验