Suppr超能文献

生物与生物医学研究中的CRISPR编辑技术

CRISPR Editing Technology in Biological and Biomedical Investigation.

作者信息

White Martyn K, Kaminski Rafal, Young Won-Bin, Roehm Pamela C, Khalili Kamel

机构信息

Center for Neurovirology and Comprehensive NeuroAIDS Center, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, Pennsylvania, 19140.

出版信息

J Cell Biochem. 2017 Nov;118(11):3586-3594. doi: 10.1002/jcb.26099. Epub 2017 Jul 4.

Abstract

The CRISPR or clustered regularly interspaced short palindromic repeats system is currently the most advanced approach to genome editing and is notable for providing an unprecedented degree of specificity, effectiveness, and versatility in genetic manipulation. CRISPR evolved as a prokaryotic immune system to provide an acquired immunity and resistance to foreign genetic elements such as bacteriophages. It has recently been developed into a tool for the specific targeting of nucleotide sequences within complex eukaryotic genomes for the purpose of genetic manipulation. The power of CRISPR lies in its simplicity and ease of use, its flexibility to be targeted to any given nucleotide sequence by the choice of an easily synthesized guide RNA, and its ready ability to continue to undergo technical improvements. Applications for CRISPR are numerous including creation of novel transgenic cell animals for research, high-throughput screening of gene function, potential clinical gene therapy, and nongene-editing approaches such as modulating gene activity and fluorescent tagging. In this prospect article, we will describe the salient features of the CRISPR system with an emphasis on important drawbacks and considerations with respect to eliminating off-target events and obtaining efficient CRISPR delivery. We will discuss recent technical developments to the system and we will illustrate some of the most recent applications with an emphasis on approaches to eliminate human viruses including HIV-1, JCV and HSV-1 and prospects for the future. J. Cell. Biochem. 118: 3586-3594, 2017. © 2017 Wiley Periodicals, Inc.

摘要

CRISPR(成簇规律间隔短回文重复序列)系统是目前基因组编辑领域最先进的方法,其在基因操作中具有前所未有的特异性、有效性和多功能性,因而备受瞩目。CRISPR最初作为原核生物的免疫系统而进化,用于提供获得性免疫,抵抗诸如噬菌体等外来遗传元件。最近,它已发展成为一种用于特异性靶向复杂真核基因组中核苷酸序列以进行基因操作的工具。CRISPR的强大之处在于其简单易用,通过选择易于合成的向导RNA可灵活靶向任何给定的核苷酸序列,并且能够持续进行技术改进。CRISPR的应用广泛,包括创建用于研究的新型转基因细胞动物、高通量筛选基因功能、潜在的临床基因治疗以及诸如调节基因活性和荧光标记等非基因编辑方法。在这篇前瞻性文章中,我们将描述CRISPR系统的显著特征,重点关注在消除脱靶事件和实现高效CRISPR递送方面的重要缺点及注意事项。我们将讨论该系统最近的技术发展,并举例说明一些最新应用,重点是消除包括HIV-1、JCV和HSV-1在内的人类病毒的方法以及未来前景。《细胞生物化学杂志》118: 3586 - 3594, 2017。© 2017威利期刊公司

相似文献

1
CRISPR Editing Technology in Biological and Biomedical Investigation.
J Cell Biochem. 2017 Nov;118(11):3586-3594. doi: 10.1002/jcb.26099. Epub 2017 Jul 4.
2
Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.
Circ Res. 2017 Mar 3;120(5):876-894. doi: 10.1161/CIRCRESAHA.116.309727.
3
The implication of CRISPR/Cas9 genome editing technology in combating human oncoviruses.
J Med Virol. 2019 Jan;91(1):1-13. doi: 10.1002/jmv.25292. Epub 2018 Sep 24.
4
Progress and Application of CRISPR/Cas Technology in Biological and Biomedical Investigation.
J Cell Biochem. 2017 Oct;118(10):3061-3071. doi: 10.1002/jcb.26198. Epub 2017 Jun 30.
5
CRISPR/Cas9 Immune System as a Tool for Genome Engineering.
Arch Immunol Ther Exp (Warsz). 2017 Jun;65(3):233-240. doi: 10.1007/s00005-016-0427-5. Epub 2016 Oct 3.
6
[Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
Zhonghua Shao Shang Za Zhi. 2018 Apr 20;34(4):253-256. doi: 10.3760/cma.j.issn.1009-2587.2018.04.013.
7
Emerging Role of CRISPR/Cas9 Technology for MicroRNAs Editing in Cancer Research.
Cancer Res. 2017 Dec 15;77(24):6812-6817. doi: 10.1158/0008-5472.CAN-17-2142. Epub 2017 Dec 5.
8
genome editing thrives with diversified CRISPR technologies.
Zool Res. 2018 Mar 18;39(2):58-71. doi: 10.24272/j.issn.2095-8137.2017.012.
9
CRISPR-Cas9 technology: applications and human disease modelling.
Brief Funct Genomics. 2017 Jan;16(1):4-12. doi: 10.1093/bfgp/elw025. Epub 2016 Jun 26.
10
Engineered CRISPR Systems for Next Generation Gene Therapies.
ACS Synth Biol. 2017 Sep 15;6(9):1614-1626. doi: 10.1021/acssynbio.7b00011. Epub 2017 Jun 7.

引用本文的文献

1
Aquaporin-3 Downregulation in Vitiligo Keratinocytes Increases Oxidative Stress of Melanocytes.
Biomol Ther (Seoul). 2023 Nov 1;31(6):648-654. doi: 10.4062/biomolther.2023.112. Epub 2023 Oct 11.
2
Acceleration of the Deamination of Cytosine through Photo-Crosslinking.
Curr Issues Mol Biol. 2023 May 29;45(6):4687-4700. doi: 10.3390/cimb45060298.
3
Exosome engineering in cell therapy and drug delivery.
Inflammopharmacology. 2023 Feb;31(1):145-169. doi: 10.1007/s10787-022-01115-7. Epub 2023 Jan 7.
4
Insights Into Persistent HIV-1 Infection and Functional Cure: Novel Capabilities and Strategies.
Front Microbiol. 2022 Apr 27;13:862270. doi: 10.3389/fmicb.2022.862270. eCollection 2022.
6
Gene editing and elimination of latent herpes simplex virus in vivo.
Nat Commun. 2020 Aug 18;11(1):4148. doi: 10.1038/s41467-020-17936-5.
7
Emerging Therapeutic Approaches for Cystic Fibrosis. From Gene Editing to Personalized Medicine.
Front Pharmacol. 2019 Feb 27;10:121. doi: 10.3389/fphar.2019.00121. eCollection 2019.
8
Gene Therapy Approaches to Functional Cure and Protection of Hematopoietic Potential in HIV Infection.
Pharmaceutics. 2019 Mar 11;11(3):114. doi: 10.3390/pharmaceutics11030114.
9
CRISPR/Cas9-Mediated Treatment Ameliorates the Phenotype of the Epidermolytic Palmoplantar Keratoderma-like Mouse.
Mol Ther Nucleic Acids. 2018 Sep 7;12:220-228. doi: 10.1016/j.omtn.2018.05.005. Epub 2018 Jun 2.
10
GM insect pests under the Brazilian regulatory framework: development and perspectives.
BMC Proc. 2018 Jul 19;12(Suppl 8):16. doi: 10.1186/s12919-018-0107-z. eCollection 2018.

本文引用的文献

1
In Vivo Excision of HIV-1 Provirus by saCas9 and Multiplex Single-Guide RNAs in Animal Models.
Mol Ther. 2017 May 3;25(5):1168-1186. doi: 10.1016/j.ymthe.2017.03.012. Epub 2017 Mar 30.
2
Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice.
Nat Commun. 2017 Mar 14;8:14716. doi: 10.1038/ncomms14716.
3
CRISPR-Cas9 system-driven site-specific selection pressure on Herpes simplex virus genomes.
Virus Res. 2018 Jan 15;244:286-295. doi: 10.1016/j.virusres.2017.03.010. Epub 2017 Mar 6.
4
Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.
Circ Res. 2017 Mar 3;120(5):876-894. doi: 10.1161/CIRCRESAHA.116.309727.
5
6
In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni.
Nat Commun. 2017 Feb 21;8:14500. doi: 10.1038/ncomms14500.
7
Novel AIDS therapies based on gene editing.
Cell Mol Life Sci. 2017 Jul;74(13):2439-2450. doi: 10.1007/s00018-017-2479-z. Epub 2017 Feb 16.
8
Cas9, Cpf1 and C2c1/2/3-What's next?
Bioengineered. 2017 May 4;8(3):265-273. doi: 10.1080/21655979.2017.1282018. Epub 2017 Jan 31.
9
Modification of the Genome of Domestic Animals.
Anim Biotechnol. 2017 Jul 3;28(3):198-210. doi: 10.1080/10495398.2016.1261874. Epub 2017 Jan 19.
10
Advances with using CRISPR/Cas-mediated gene editing to treat infections with hepatitis B virus and hepatitis C virus.
Virus Res. 2018 Jan 15;244:311-320. doi: 10.1016/j.virusres.2017.01.003. Epub 2017 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验