Biomedical Physics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90024, USA.
Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA.
Med Phys. 2017 Aug;44(8):4262-4275. doi: 10.1002/mp.12314. Epub 2017 Jun 30.
The vast majority of body CT exams are performed with automatic exposure control (AEC), which adapts the mean tube current to the patient size and modulates the tube current either angularly, longitudinally or both. However, most radiation dose estimation tools are based on fixed tube current scans. Accurate estimates of patient dose from AEC scans require knowledge of the tube current values, which is usually unavailable. The purpose of this work was to develop and validate methods to accurately estimate the tube current values prescribed by one manufacturer's AEC system to enable accurate estimates of patient dose.
Methods were developed that took into account available patient attenuation information, user selected image quality reference parameters and x-ray system limits to estimate tube current values for patient scans. Methods consistent with AAPM Report 220 were developed that used patient attenuation data that were: (a) supplied by the manufacturer in the CT localizer radiograph and (b) based on a simulated CT localizer radiograph derived from image data. For comparison, actual tube current values were extracted from the projection data of each patient. Validation of each approach was based on data collected from 40 pediatric and adult patients who received clinically indicated chest (n = 20) and abdomen/pelvis (n = 20) scans on a 64 slice multidetector row CT (Sensation 64, Siemens Healthcare, Forchheim, Germany). For each patient dataset, the following were collected with Institutional Review Board (IRB) approval: (a) projection data containing actual tube current values at each projection view, (b) CT localizer radiograph (topogram) and (c) reconstructed image data. Tube current values were estimated based on the actual topogram (actual-topo) as well as the simulated topogram based on image data (sim-topo). Each of these was compared to the actual tube current values from the patient scan. In addition, to assess the accuracy of each method in estimating patient organ doses, Monte Carlo simulations were performed by creating voxelized models of each patient, identifying key organs and incorporating tube current values into the simulations to estimate dose to the lungs and breasts (females only) for chest scans and the liver, kidney, and spleen for abdomen/pelvis scans. Organ doses from simulations using the actual tube current values were compared to those using each of the estimated tube current values (actual-topo and sim-topo).
When compared to the actual tube current values, the average error for tube current values estimated from the actual topogram (actual-topo) and simulated topogram (sim-topo) was 3.9% and 5.8% respectively. For Monte Carlo simulations of chest CT exams using the actual tube current values and estimated tube current values (based on the actual-topo and sim-topo methods), the average differences for lung and breast doses ranged from 3.4% to 6.6%. For abdomen/pelvis exams, the average differences for liver, kidney, and spleen doses ranged from 4.2% to 5.3%.
Strong agreement between organ doses estimated using actual and estimated tube current values provides validation of both methods for estimating tube current values based on data provided in the topogram or simulated from image data.
绝大多数的身体 CT 检查都采用自动曝光控制(AEC)进行,该方法会根据患者体型调整平均管电流,并以角度、长度或两者结合的方式调整管电流。然而,大多数辐射剂量估计工具都是基于固定管电流扫描。要准确估计 AEC 扫描的患者剂量,需要了解管电流值,但通常无法获得这些值。本研究的目的是开发和验证方法,以便准确估计一个制造商的 AEC 系统规定的管电流值,从而能够准确估计患者剂量。
研究中开发的方法考虑了可用的患者衰减信息、用户选择的图像质量参考参数和 X 射线系统限制,以便估计患者扫描的管电流值。开发了符合 AAPM 报告 220 的方法,这些方法使用了:(a) 制造商在 CT 定位片上提供的患者衰减数据和 (b) 基于从图像数据得出的模拟 CT 定位片。为了进行比较,从每位患者的投影数据中提取了实际管电流值。每种方法的验证都是基于从接受临床胸部(n=20)和腹部/骨盆(n=20)CT 扫描的 40 名儿科和成年患者的数据进行的。对于每个患者数据集,均通过机构审查委员会(IRB)的批准收集了以下信息:(a) 包含每个投影视图的实际管电流值的投影数据,(b) CT 定位片(定位图)和 (c) 重建图像数据。管电流值是基于实际定位图(实际定位图)以及基于图像数据的模拟定位图(模拟定位图)来估计的。将这些值与从患者扫描中获得的实际管电流值进行了比较。此外,为了评估每种方法在估计患者器官剂量方面的准确性,通过创建每位患者的体素化模型、识别关键器官以及将管电流值纳入模拟中,对每个患者进行了蒙特卡罗模拟,以估计胸部 CT 扫描的肺部和乳房(仅女性)以及腹部/骨盆扫描的肝脏、肾脏和脾脏的剂量。使用实际管电流值和使用每个估计管电流值(实际定位图和模拟定位图)进行的模拟的器官剂量进行了比较。
与实际管电流值相比,从实际定位图(实际定位图)和模拟定位图(模拟定位图)中估计的管电流值的平均误差分别为 3.9%和 5.8%。对于使用实际管电流值和估计管电流值(基于实际定位图和模拟定位图方法)进行的胸部 CT 检查的蒙特卡罗模拟,肺和乳房剂量的平均差异范围为 3.4%至 6.6%。对于腹部/骨盆检查,肝脏、肾脏和脾脏剂量的平均差异范围为 4.2%至 5.3%。
使用实际和估计的管电流值估计的器官剂量之间的高度一致性验证了基于定位图中提供的数据或从图像数据中模拟的管电流值的两种方法。