Suppr超能文献

肾脏电解质转运中的性别差异。I. AT受体在噻嗪类敏感型Na-Cl共转运体活性及雄性和雌性小鼠表达中的作用。

Gender difference in kidney electrolyte transport. I. Role of AT receptor in thiazide-sensitive Na-Cl cotransporter activity and expression in male and female mice.

作者信息

Li Jing, Hatano Ryo, Xu Shuhua, Wan Laxiang, Yang Lei, Weinstein Alan M, Palmer Lawrence, Wang Tong

机构信息

Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut.

Department of Basic Medical Science, Chengdu Medical College, Chengdu, China.

出版信息

Am J Physiol Renal Physiol. 2017 Aug 1;313(2):F505-F513. doi: 10.1152/ajprenal.00087.2017. Epub 2017 May 31.

Abstract

We studied gender differences in Na-Cl cotransporter (NCC) activity and expression in wild-type (WT) and AT receptor knockout (KO) mice. In renal clearance experiments, urine volume (UV), glomerular filtration rate, absolute Na (E) and K (E), and fractional Na (FE) and K excretion were measured and compared at peak changes after bolus intravenous injection of hydrochlorothiazide (HCTZ; 30 mg/kg). In WT, females responded more strongly than males to HCTZ, with larger fractional increases of UV (7.8- vs. 3.4-fold), E (11.7- vs. 5.7-fold), FE (7.9- vs. 4.9-fold), and E (2.8- vs. 1.4-fold). In contrast, there were no gender differences in the responses to the diuretic in KO mice; HCTZ produced greater effects on male KO than on WT but similar effects on females. In WT, total (tNCC) and phosphorylated (pNCC) NCC protein expressions were 1.8- and 4.6-fold higher in females compared with males ( < 0.05), consistent with the larger response to HCTZ. In KO mice, tNCC and pNCC increased significantly in males to levels not different from those in females. There were no gender differences in the expression of the Na/H exchanger (NHE3) in WT; NHE3 protein decreased to similar extents in male and female KO animals, suggesting AT-mediated NHE3 expression in proximal tubules. The resulting increase in delivery of NaCl to the distal nephron may underlie increased NCC expression and activity in mice lacking the AT receptor.

摘要

我们研究了野生型(WT)和血管紧张素受体基因敲除(KO)小鼠中钠-氯共转运体(NCC)活性及表达的性别差异。在肾脏清除实验中,静脉推注氢氯噻嗪(HCTZ;30mg/kg)后,于峰值变化时测量并比较尿量(UV)、肾小球滤过率、绝对钠排泄量(E)和钾排泄量(E),以及钠排泄分数(FE)和钾排泄分数。在野生型小鼠中,雌性对HCTZ的反应比雄性更强,UV的分数增加更大(分别为7.8倍和3.4倍),E(分别为11.7倍和5.7倍),FE(分别为7.9倍和4.9倍),以及E(分别为2.8倍和1.4倍)。相比之下,基因敲除小鼠对利尿剂的反应不存在性别差异;HCTZ对雄性基因敲除小鼠的作用比对野生型小鼠更大,但对雌性的作用相似。在野生型小鼠中,雌性的总NCC(tNCC)和磷酸化NCC(pNCC)蛋白表达分别比雄性高1.8倍和4.6倍(<0.05),这与对HCTZ的更大反应一致。在基因敲除小鼠中,雄性的tNCC和pNCC显著增加,达到与雌性无差异的水平。野生型小鼠中钠/氢交换体(NHE3)的表达不存在性别差异;在雄性和雌性基因敲除动物中,NHE3蛋白下降程度相似,提示血管紧张素介导近端小管中NHE3的表达。向远端肾单位输送的氯化钠增加,可能是缺乏血管紧张素受体的小鼠中NCC表达和活性增加的原因。

相似文献

2
Sex difference in kidney electrolyte transport II: impact of K intake on thiazide-sensitive cation excretion in male and female mice.
Am J Physiol Renal Physiol. 2019 Oct 1;317(4):F967-F977. doi: 10.1152/ajprenal.00125.2019. Epub 2019 Aug 7.
3
Sex difference in kidney electrolyte transport III: Impact of low K intake on thiazide-sensitive cation excretion in male and female mice.
Pflugers Arch. 2021 Nov;473(11):1749-1760. doi: 10.1007/s00424-021-02611-5. Epub 2021 Aug 29.
4
Angiotensin II AT1 receptor blockade decreases vasopressin-induced water reabsorption and AQP2 levels in NaCl-restricted rats.
Am J Physiol Renal Physiol. 2005 Apr;288(4):F673-84. doi: 10.1152/ajprenal.00304.2004. Epub 2004 Dec 7.
5
Altered expression of major renal Na transporters in rats with unilateral ureteral obstruction.
Am J Physiol Renal Physiol. 2003 Jan;284(1):F155-66. doi: 10.1152/ajprenal.00272.2002. Epub 2002 Aug 21.
6
AT2R (Angiotensin II Type 2 Receptor)-Mediated Regulation of NCC (Na-Cl Cotransporter) and Renal K Excretion Depends on the K Channel, Kir4.1.
Hypertension. 2018 Apr;71(4):622-630. doi: 10.1161/HYPERTENSIONAHA.117.10471. Epub 2018 Feb 26.
7
Decreased abundance of major Na(+) transporters in kidneys of rats with ischemia-induced acute renal failure.
Am J Physiol Renal Physiol. 2000 Jun;278(6):F925-39. doi: 10.1152/ajprenal.2000.278.6.F925.
8
Regulation of NHE3, NKCC2, and NCC abundance in kidney during aldosterone escape phenomenon: role of NO.
Am J Physiol Renal Physiol. 2003 Nov;285(5):F843-51. doi: 10.1152/ajprenal.00110.2003. Epub 2003 Jul 1.
9
Increasing plasma [K+] by intravenous potassium infusion reduces NCC phosphorylation and drives kaliuresis and natriuresis.
Am J Physiol Renal Physiol. 2014 May 1;306(9):F1059-68. doi: 10.1152/ajprenal.00015.2014. Epub 2014 Mar 5.
10
Altered expression of Na transporters NHE-3, NaPi-II, Na-K-ATPase, BSC-1, and TSC in CRF rat kidneys.
Am J Physiol. 1999 Aug;277(2):F257-70. doi: 10.1152/ajprenal.1999.277.2.F257.

引用本文的文献

2
Pathophysiological role of Na-Cl cotransporter in kidneys, blood pressure, and metabolism.
Hum Cell. 2024 Sep;37(5):1306-1315. doi: 10.1007/s13577-024-01099-2. Epub 2024 Jul 10.
4
Sex differences in renal transporters: assessment and functional consequences.
Nat Rev Nephrol. 2024 Jan;20(1):21-36. doi: 10.1038/s41581-023-00757-2. Epub 2023 Sep 8.
5
Direct androgen receptor control of sexually dimorphic gene expression in the mammalian kidney.
Dev Cell. 2023 Nov 6;58(21):2338-2358.e5. doi: 10.1016/j.devcel.2023.08.010. Epub 2023 Sep 5.
6
Thirty years of the NaCl cotransporter: from cloning to physiology and structure.
Am J Physiol Renal Physiol. 2023 Oct 1;325(4):F479-F490. doi: 10.1152/ajprenal.00114.2023. Epub 2023 Aug 10.
7
Sex differences in renal electrolyte transport.
Curr Opin Nephrol Hypertens. 2023 Sep 1;32(5):467-475. doi: 10.1097/MNH.0000000000000909. Epub 2023 Jun 23.
8
Direct androgen receptor regulation of sexually dimorphic gene expression in the mammalian kidney.
bioRxiv. 2023 May 25:2023.05.06.539585. doi: 10.1101/2023.05.06.539585.
10
Potassium and the kidney: a reciprocal relationship with clinical relevance.
Pediatr Nephrol. 2022 Oct;37(10):2245-2254. doi: 10.1007/s00467-022-05494-5. Epub 2022 Feb 23.

本文引用的文献

1
Potassium Sensing by Renal Distal Tubules Requires Kir4.1.
J Am Soc Nephrol. 2017 Jun;28(6):1814-1825. doi: 10.1681/ASN.2016090935. Epub 2017 Jan 4.
2
SGK1-dependent ENaC processing and trafficking in mice with high dietary K intake and elevated aldosterone.
Am J Physiol Renal Physiol. 2017 Jan 1;312(1):F65-F76. doi: 10.1152/ajprenal.00257.2016. Epub 2016 Jul 13.
3
New insights into sodium transport regulation in the distal nephron: Role of G-protein coupled receptors.
World J Biol Chem. 2016 Feb 26;7(1):44-63. doi: 10.4331/wjbc.v7.i1.44.
4
Regulation of Renal Electrolyte Transport by WNK and SPAK-OSR1 Kinases.
Annu Rev Physiol. 2016;78:367-89. doi: 10.1146/annurev-physiol-021115-105431.
5
Mini-review: regulation of the renal NaCl cotransporter by hormones.
Am J Physiol Renal Physiol. 2016 Jan 1;310(1):F10-4. doi: 10.1152/ajprenal.00354.2015. Epub 2015 Oct 28.
7
Critical role of the SPAK protein kinase CCT domain in controlling blood pressure.
Hum Mol Genet. 2015 Aug 15;24(16):4545-58. doi: 10.1093/hmg/ddv185. Epub 2015 May 20.
8
Ovarian hormones and prolactin increase renal NaCl cotransporter phosphorylation.
Am J Physiol Renal Physiol. 2015 Apr 15;308(8):F799-808. doi: 10.1152/ajprenal.00447.2014. Epub 2015 Jan 13.
9
WNK4 is the major WNK positively regulating NCC in the mouse kidney.
Biosci Rep. 2014 May 9;34(3):e00107. doi: 10.1042/BSR20140047.
10
The sodium chloride cotransporter SLC12A3: new roles in sodium, potassium, and blood pressure regulation.
Pflugers Arch. 2014 Jan;466(1):107-18. doi: 10.1007/s00424-013-1407-9. Epub 2013 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验