Garcia S S, Blackledge M S, Michalek S, Su L, Ptacek T, Eipers P, Morrow C, Lefkowitz E J, Melander C, Wu H
1 Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA.
2 Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
J Dent Res. 2017 Jul;96(7):807-814. doi: 10.1177/0022034517698096. Epub 2017 Mar 10.
Dental caries is a costly and prevalent disease characterized by the demineralization of the tooth's enamel. Disease outcome is influenced by host factors, dietary intake, cariogenic bacteria, and other microbes. The cariogenic bacterial species Streptococcus mutans metabolizes sucrose to initiate biofilm formation on the tooth surface and consequently produces lactic acid to degrade the tooth's enamel. Persistence of S. mutans biofilms in the oral cavity can lead to tooth decay. To date, no anticaries therapies that specifically target S. mutans biofilms but do not disturb the overall oral microbiome are available. We screened a library of 2-aminoimidazole antibiofilm compounds with a biofilm dispersion assay and identified a small molecule that specifically targets S. mutans biofilms. At 5 µM, the small molecule annotated 3F1 dispersed 50% of the established S. mutans biofilm but did not disperse biofilms formed by the commensal species Streptococcus sanguinis or Streptococcus gordonii. 3F1 dispersed S. mutans biofilms independently of biofilm-related factors such as antigen I/II and glucosyltransferases. 3F1 treatment effectively prevented dental caries by controlling S. mutans in a rat caries model without perturbing the oral microbiota. Our study demonstrates that selective targeting of S. mutans biofilms by 3F1 was able to effectively reduce dental caries in vivo without affecting the overall oral microbiota shaped by the intake of dietary sugars, suggesting that the pathogenic biofilm-specific treatment is a viable strategy for disease prevention.
龋齿是一种代价高昂且普遍的疾病,其特征是牙齿釉质脱矿。疾病的结果受宿主因素、饮食摄入、致龋细菌和其他微生物的影响。致龋细菌变形链球菌代谢蔗糖,在牙齿表面引发生物膜形成,并因此产生乳酸来降解牙齿釉质。变形链球菌生物膜在口腔中的持续存在会导致龋齿。迄今为止,尚无专门针对变形链球菌生物膜但不干扰整体口腔微生物群的抗龋疗法。我们通过生物膜分散试验筛选了一个2-氨基咪唑抗生物膜化合物文库,并鉴定出一种特异性靶向变形链球菌生物膜的小分子。在5 μM浓度下,标注为3F1的小分子使已形成的变形链球菌生物膜的50%分散,但未使共生菌血链球菌或戈登链球菌形成的生物膜分散。3F1分散变形链球菌生物膜与生物膜相关因子如抗原I/II和葡糖基转移酶无关。在大鼠龋齿模型中,3F1处理通过控制变形链球菌有效预防了龋齿,而不干扰口腔微生物群。我们的研究表明,3F1对变形链球菌生物膜的选择性靶向能够在不影响由饮食糖摄入形成的整体口腔微生物群的情况下,有效减少体内龋齿,这表明针对致病性生物膜的特异性治疗是一种可行的疾病预防策略。