Suppr超能文献

表观遗传调控在肺动脉高压中的关键作用。

Critical effects of epigenetic regulation in pulmonary arterial hypertension.

作者信息

Chen Dewei, Gao Wenxiang, Wang Shouxian, Ni Bing, Gao Yuqi

机构信息

Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, People's Republic of China.

Key Laboratory of High Altitude Medicine of PLA, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China.

出版信息

Cell Mol Life Sci. 2017 Oct;74(20):3789-3808. doi: 10.1007/s00018-017-2551-8. Epub 2017 Jun 1.

Abstract

Pulmonary arterial hypertension (PAH) is characterized by persistent pulmonary vasoconstriction and pulmonary vascular remodeling. The pathogenic mechanisms of PAH remain to be fully clarified and measures of effective prevention are lacking. Recent studies; however, have indicated that epigenetic processes may exert pivotal influences on PAH pathogenesis. In this review, we summarize the latest research findings regarding epigenetic regulation in PAH, focusing on the roles of non-coding RNAs, histone modifications, ATP-dependent chromatin remodeling and DNA methylation, and discuss the potential of epigenetic-based therapies for PAH.

摘要

肺动脉高压(PAH)的特征是持续性肺血管收缩和肺血管重塑。PAH的发病机制仍有待充分阐明,且缺乏有效的预防措施。然而,最近的研究表明,表观遗传过程可能对PAH的发病机制产生关键影响。在本综述中,我们总结了关于PAH表观遗传调控的最新研究发现,重点关注非编码RNA、组蛋白修饰、ATP依赖的染色质重塑和DNA甲基化的作用,并讨论基于表观遗传学的PAH治疗潜力。

相似文献

1
Critical effects of epigenetic regulation in pulmonary arterial hypertension.
Cell Mol Life Sci. 2017 Oct;74(20):3789-3808. doi: 10.1007/s00018-017-2551-8. Epub 2017 Jun 1.
2
Insights on the epigenetic mechanisms underlying pulmonary arterial hypertension.
Braz J Med Biol Res. 2018 Oct 18;51(12):e7437. doi: 10.1590/1414-431X20187437.
3
Therapeutic implications of microRNAs in pulmonary arterial hypertension.
BMB Rep. 2014 Jun;47(6):311-7. doi: 10.5483/bmbrep.2014.47.6.085.
4
Advances in epigenetic modifications of autophagic process in pulmonary hypertension.
Front Immunol. 2023 Jun 16;14:1206406. doi: 10.3389/fimmu.2023.1206406. eCollection 2023.
5
Involvement of noncoding RNAs in epigenetic modifications of esophageal cancer.
Biomed Pharmacother. 2019 Sep;117:109192. doi: 10.1016/j.biopha.2019.109192. Epub 2019 Jul 11.
6
Emerging roles of non-coding RNAs in epigenetic regulation.
Sci China Life Sci. 2016 Mar;59(3):227-35. doi: 10.1007/s11427-016-5010-0. Epub 2016 Jan 29.
7
Epigenetics in endometrial carcinogenesis - part 2: histone modifications, chromatin remodeling and noncoding RNAs.
Epigenomics. 2017 Jun;9(6):873-892. doi: 10.2217/epi-2016-0167. Epub 2017 May 19.
8
Epigenetic regulation of pulmonary arterial hypertension.
Hypertens Res. 2011 Sep;34(9):981-6. doi: 10.1038/hr.2011.79. Epub 2011 Jun 16.
9
Epigenetic mechanisms in pulmonary arterial hypertension: the need for global perspectives.
Eur Respir Rev. 2016 Jun;25(140):135-40. doi: 10.1183/16000617.0036-2016.
10
Role of Noncoding RNA in Pulmonary Arterial Hypertension and Potential Drug Therapeutic Target.
Curr Top Med Chem. 2018;18(12):975-986. doi: 10.2174/1568026618666180719162124.

引用本文的文献

2
DNA methylation in adaptation to high-altitude environments and pathogenesis of related diseases.
Hum Genomics. 2025 Aug 30;19(1):100. doi: 10.1186/s40246-025-00794-x.
4
Weighted Gene Coexpression Network Analysis Identifies Crucial Genes Involved in Coronary Atherosclerotic Heart Disease.
Dis Markers. 2022 Aug 2;2022:6971238. doi: 10.1155/2022/6971238. eCollection 2022.
5
promoter methylation and its expression in valvular heart disease complicated with pulmonary artery hypertension.
Aging (Albany NY). 2021 Nov 18;13(22):24580-24604. doi: 10.18632/aging.203690.
6
Integrative Analyses of Genes Associated With Right Ventricular Cardiomyopathy Induced by Tricuspid Regurgitation.
Front Genet. 2021 Sep 17;12:708275. doi: 10.3389/fgene.2021.708275. eCollection 2021.
9
Different forms of pulmonary hypertension in a family with clinical and genetic evidence for hereditary hemorrhagic teleangectasia type 2.
Pulm Circ. 2018 Oct-Dec;8(4):2045894018782664. doi: 10.1177/2045894018782664. Epub 2018 May 25.
10
Resveratrol as a potential therapeutic drug for respiratory system diseases.
Drug Des Devel Ther. 2017 Dec 15;11:3591-3598. doi: 10.2147/DDDT.S148868. eCollection 2017.

本文引用的文献

2
BMP type II receptor as a therapeutic target in pulmonary arterial hypertension.
Cell Mol Life Sci. 2017 Aug;74(16):2979-2995. doi: 10.1007/s00018-017-2510-4. Epub 2017 Apr 26.
3
Elevated microRNA-135a is associated with pulmonary arterial hypertension in experimental mouse model.
Oncotarget. 2017 May 30;8(22):35609-35618. doi: 10.18632/oncotarget.16011.
4
Long Noncoding RNA MANTIS Facilitates Endothelial Angiogenic Function.
Circulation. 2017 Jul 4;136(1):65-79. doi: 10.1161/CIRCULATIONAHA.116.026991. Epub 2017 Mar 28.
5
Epigenetic control of gene expression: Potential implications for cancer treatment.
Crit Rev Oncol Hematol. 2017 Mar;111:166-172. doi: 10.1016/j.critrevonc.2017.01.020. Epub 2017 Feb 4.
7
The role of nuclear factor of activated T cells in pulmonary arterial hypertension.
Cell Cycle. 2017 Mar 19;16(6):508-514. doi: 10.1080/15384101.2017.1281485. Epub 2017 Jan 19.
8
Targeting Vascular Remodeling to Treat Pulmonary Arterial Hypertension.
Trends Mol Med. 2017 Jan;23(1):31-45. doi: 10.1016/j.molmed.2016.11.005. Epub 2016 Dec 16.
10
MicroRNA let-7g inhibited hypoxia-induced proliferation of PASMCs via G/G cell cycle arrest by targeting c-myc.
Life Sci. 2017 Feb 1;170:9-15. doi: 10.1016/j.lfs.2016.11.020. Epub 2016 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验